화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.139, No.49, 18101-18106, 2017
Design of a Photoredox Catalyst that Enables the Direct Synthesis of Carbamate-Protected Primary Amines via Photoinduced, Copper-Catalyzed N-Alkylation Reactions of Unactivated Secondary Halides
Despite the long history of S(N)2 reactions between nitrogen nucleophiles and alkyl electrophiles, many such substitution reactions remain out of reach. In recent years, efforts to develop transition-metal catalysts to address this deficiency have begun to emerge. In this report, we address the challenge of coupling a carbamate nucleophile with an unactivated secondary alkyl electrophile to generate a substituted carbamate, a process that has not been achieved effectively in the absence of a catalyst; the product carbamates can serve as useful intermediates in organic synthesis as well as bioactive compounds in their own right. Through the design and synthesis of a new copper-based photoredox catalyst, bearing a tridentate carbazolide/bisphosphine ligand, that can be activated upon irradiation by blue-LED lamps, we can achieve the coupling of a range of primary carbamates with unactivated secondary alkyl bromides at room temperature. Our mechanistic observations are consistent with the new copper complex serving its intended role as a photoredox catalyst, working in conjunction with a second copper complex that mediates C-N bond formation in an out-of-cage process.