Journal of the American Chemical Society, Vol.139, No.42, 14913-14916, 2017
Through-Space Activation Can Override Substituent Effects in Electrophilic Aromatic Substitution
Electrophilic aromatic substitution (EAS) represents one of the most important classes of reactions in all of chemistry. One of the "iron laws" of EAS is that an electron-rich aromatic ring will react more rapidly than an electron-poor ring with suitable electrophiles. In this report, we present unique examples of electron-deficient arenes instead undergoing preferential substitution in intramolecular competition with more electron-rich rings. These results were made possible by exploiting the heretofore unknown propensity of a hydrogen-bonding OH-arene interaction to switch to the alternative HO-arene interaction in order to provide activation. In an extreme case, this through-space HO-arene activation is demonstrated to overcome the deactivating effect of a trifluoromethyl substituent, making an otherwise highly electron-deficient ring the site of exclusive reactivity in competition experiments. Additionally, the HO-arene activation promotes tetrabromination of an increasingly more electron-deficient arene before the unactivated "control" ring undergoes monobromination. It is our hope that these results will shed light on biological interactions as well as provide new strategies for the electrophilic substitution of aromatic rings.