화학공학소재연구정보센터
Materials Research Bulletin, Vol.98, 200-205, 2018
Hydrogen adsorption on decorated graphyne and its analogous with Na
In this paper, we have addressed the structural stability and hydrogen storage capability of single side and double side Na-decorated gamma-Graphyne, Graphyne-like Boron Nitride and CCBN-yne, using three methods of density functional theory approximation: PBEsol, vdW-DF2-B86R and vdW-DF2. We also investigated the electronic properties of these structures, decorated by Na atoms and adsorbing hydrogen, such as density of states and band structure. Our results showed that hydrogen can be adsorbed up to three molecules per Na atom. We found the optimal geometries of adsorbed hydrogen molecules on adsorption candidates. We also found that Direct band-gap at "M" point changes after decoration and adsorption in mentioned structures. Finally, we explored metallic structures for hydrogen storage which can be used in the industry of fuel cells.