화학공학소재연구정보센터
Science, Vol.358, No.6367, 1168-1171, 2017
Organocalcium-mediated nucleophilic alkylation of benzene
The electrophilic aromatic substitution of a C-H bond of benzene is one of the archetypal transformations of organic chemistry. In contrast, the electron-rich p-system of benzene is highly resistant to reactions with electron-rich and negatively charged organic nucleophiles. Here, we report that this previously insurmountable electronic repulsion may be overcome through the use of sufficiently potent organocalcium nucleophiles. Calcium n-alkyl derivatives-synthesized by reaction of ethene, but-1-ene, and hex-1-ene with a dimeric calcium hydride-react with protio and deutero benzene at 60 degrees C through nucleophilic substitution of an aromatic C-D/H bond. These reactions produce the n-alkyl benzenes with regeneration of the calcium hydride. Density functional theory calculations implicate an unstabilized Meisenheimer complex in the C-H activation transition state.