Solid-State Electronics, Vol.137, 95-101, 2017
Low frequency noise in tunneling field effect transistors
An analytical model is developed for the fluctuation of the electrostatic potential induced by a charged trap in the gate oxide in tunneling field effect transistor (TFET). The model is applied to get the fluctuation of the drain current induced by an interface trap in TFET. A low frequency noise model based on the current transportation through the tunneling and the channel is proposed. The dependency of the normalized power spectra S(I)d/I-d(2\) on the frequency f and the gate bias V-g for TFET is obtained. The noise spectra in TFET are found to be very different from those of conventional MOSFETs, and have the superposition of Lorentzian and 1/f lineshapes with the former associated with tunneling and the later with channel transportation. The potential and current models are compared with TCAD simulation. The calculated IdVg and the noise spectra are also compared with our experimental observations. The results show that the normalized spectra of the current noise due to the tunneling are more significantly affected by Vg than that due to the transportation through the channel. The results also show that the noise from the channel is dominated by the mobility fluctuation rather than the carrier number fluctuation. (C) 2017 Elsevier Ltd. All rights reserved.
Keywords:Tunneling field effect transistor (TFET);Interface trap;Potential model;Low frequency noise