Applied Chemistry for Engineering, Vol.29, No.1, 18-21, February, 2018
온도조절 화학기상증착법을 활용한 대용량 허니컴 구조촉매 제조 연구
Study on the Simple Preparation Method of Honeycomb-structured Catalysts by Temperature-regulated Chemical Vapor Deposition
E-mail:
초록
본 연구에서는 대용량 구조 촉매의 제조 및 활용 가능성을 확인하고자 셀 밀도가 높은 세라믹 허니컴 구조체와 온도 조절 화학기상증착법을 활용하여 촉매를 제조하고 건식 개질 반응에 대한 촉매 활성을 평가하였다. 셀 밀도 600 cpsi코디어라이트 허니컴(CDR)을 대상으로 니켈을 코팅한 NiO/CDR 촉매는 코팅 조건과 시간을 조절함으로써 허니컴 구조체 셀 내부까지 충분한 균일 증착이 가능하였다, 800 ℃, 공간속도 10,000 h-1과 CH4와 CO2를 1 : 1로 주입한 조건에서 CH4는 약 83%, CO2는 약 90% 이상의 우수한 전환율을 보여 건식 개질 반응에 효과적으로 적용이 가능하다는 것을 확인하였다. 이 결과를 토대로 대면적, 대용량 촉매 제조 시 온도조절 화학기상증착법이 매우 유용하게 활용될 수 있음을 확인하였다.
We report on the simple preparation method of large-scale structured catalysts by temperature-regulated chemical vapor deposition with a high cell-density ceramic honeycomb monolith. And the feasibility for dry reforming of methane catalysts was evaluated. The NiO/Cordierite (CDR) catalyst was prepared by controlling coating conditions at each temperature step, leading to a conformal deposition of NiO inside the cordierite honeycomb monolith with the cell density of 600 cpsi. The catalytic conversion of CH4 and CO2 for dry reforming of methane were about 83% and 90% with gas hourly space velocity of 10,000 h-1 at 800 ℃, respectively. As a result, it exhibited that the temperature-regulated chemical vapor deposition method can be expedient for the preparation of large-scale structured catalysts.
Keywords:temperature regulated-chemical vapor deposition (TR-CVD);structured catalyst;honeycomb monolith;Ni based catalyst;dry reforming of methane
- Rezaei F, Webley P, Chem. Eng. Sci., 64(24), 5182 (2009)
- Rezaei F, Webley PA, Chem. Eng. Sci., 69(1), 270 (2012)
- Akhtara F, Andersson L, Ogunwumi S, Hedin N, Bergstroma L, J. European Ceram. Soc., 34, 1643 (2014)
- Mitchell S, Michels NL, Perez-Ramirez J, Chem. Soc. Rev., 42, 6094 (2013)
- Adamowska M, Costa PD, J. Nanopart. Res., 2015, 601941 (2015)
- Hochmuth JK, Wassermann K, Farrauto RJ, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Comprehensive Inorganic Chemistry II, 7, 505-523 (2013).
- Han SW, Kim IH, Kim DH, Park KJ, Park EJ, Jeong MG, Kim YD, Appl. Surf. Sci., 385, 597 (2016)
- Kim IH, Seo HO, Park EJ, Han SW, Kim YD, Sci. Rep., 7, 1 (2017)
- Han JW, Park JS, Choi MS, Lee H, Appl. Catal. B: Environ., 203, 625 (2017)
- Shamskar FR, Rezaei M, Meshkani F, Int. J. Hydrog. Energy, 42(7), 4155 (2017)
- Bengaard HS, Norskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR, J. Catal., 209(2), 365 (2002)
- Liu C, Ye J, Jiang J, Par Y, ChemCatChem, 3, 529 (2011)
- de Caprariis B, de Filippis P, Palma V, Petrullo A, Ricca A, Ruoccob C, Scarsella M, Appl. Catal. A: Gen., 517, 47 (2016)
- Jeong MG, Kim SY, Kim DH, Han SW, Kim IH, Lee M, Hwang YK, Kim YD, Appl. Catal. A: Gen., 515, 45 (2016)
- Jeong HD, Clean Technol., 23(2), 213 (2017)