화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.1, 37-42, February, 2018
폴리프로필렌/케나프 섬유 펠트 복합체 물성에 대한 실란커플링제의 영향
Effect of Silane Coupling Agent on Physical Properties of Polypropylene (PP)/Kenaf Fiber (KF) Felt Composites
E-mail:
초록
폴리프로필렌(PP)과 케나프섬유(KF) 펠트의 상용성 개선을 위해 3종류의 실란 커플링제 1 wt%를 PP/KF 펠트에 처리하여 PP/KF와 PP/KF/폴리우레탄(PU) 펠트 복합체를 제조하였다. KF에 실란 커플링제 결합여부 확인을 위해 Si-O-Si와 Si-O-C 작용기를 적외선분광기(FT-IR)와 X선 광전자분광분석기(XPS)를 이용하여 측정하였다. 열적 특성분석을 위해 시차주사열용량분석기와 열중량분석기를 이용하였으며, 실란 커플링제가 처리된 PP/KF 복합체의 열안정성이 증가하는 결과를 보여주었다. PP/KF와 PP/KF/PU 복합체의 인장, 굴곡 그리고 충격특성을 분석한 결과 기계적 특성의 개선효과는 (3-Aminopropyl)triethoxysilane (APS) 1-2 wt%에서 가장 우수하였다. 이와 같은 기계적물성의 개선은 실란 작용기가 천연섬유와 결합하여 PP와 KF의 상용성을 향상시킨 결과로 해석할 수 있고, 인장시험 후 파단면의 SEM 결과를 통해 확인하였다.
In order to increase the compatibility of polypropylene (PP) and kenaf fiber (KF) felt, PP/KF and PP/KF/polyurethane (PU) felt composites were prepared by treating KF with three kinds of silane coupling agents. The concentration of silane coupling agents was fixed at 1 wt%. The chemical reaction between KF and silane coupling agents was confirmed by the existence of Si-O-Si and Si-O-C functional group bands appeared on FT-IR and X-ray photoelectron spectra (XPS). Thermal properties of PP/KF composites were investigated by DSC and TGA, and the thermal stability of PP/KF composites with treated KF increased. Based on tensile, flexural and impact properties of PP/KF and PP/KF/PU composites, 1-2 wt% of (3-aminopropyl)triethoxysilane (APS) contents were the optimum formulation as a compatibilizer. The tensile and flexural strength of the felt composites treated with the silane coupling agents were improved. This is mainly due to the improvement in the compatibility between PP and KF, which was confirmed by SEM images of the fractured surfaces after tension tests.
  1. Han BS, Auto J., 33, 57 (2011)
  2. An BM, J. Korean Soc. Manuf. Technol. Eng., 23, 153 (2014)
  3. Cha KJ, Lee HB, Proceedings of Korean Society of Manufacturing Process Engineers, October 7-8, Sacheon, Korea (2015).
  4. Lee KD, Lee WK, Auto J., 31, 44 (2009)
  5. Cho D, Lee SG, Park WH, Han SO, Polym. Sci. Technol., 13(4), 460 (2002)
  6. Rozman HD, Shannon-Ong SH, Azizah AB, Tay GS, J. Polym. Environ., 21, 1032 (2013)
  7. Cho DH, Kim HJ, Elast. Compos., 44, 13 (2009)
  8. Kim SJ, Yoo CS, Kim GH, Ha CS, J. Adhes. Interface, 9, 24 (2008)
  9. Oh JS, Lee SH, Bumm SH, Kim KJ, Polymer, 37, 613 (2013)
  10. Chen Y, Chiparus O, Sun L, Negulescu I, Parikh DV, Calamari TA, J. Ind. Text., 35, 47 (2005)
  11. Lee BH, Kim HJ, Yu WR, Fiber. Polym., 10, 83 (2009)
  12. Kim KY, Doh SJ, Im JN, Jeong WY, An HJ, Lim DY, Fiber. Polym., 14, 637 (2013)
  13. Dhakal HN, Zhang ZY, Richardson MOW, Errajjhi OAZ, Compos. Struct., 81, 559 (2007)
  14. Kim SJ, Yoo CS, Ha CS, J. Adhes. Interface, 10, 23 (2009)
  15. Park JM, Quang ST, Hwang BS, DeVries KL, Compos. Sci. Technol., 66, 2686 (2006)
  16. Sgriccia N, Hawley MC, Misra M, Composites A, 39, 1632 (2008)
  17. Li X, Tabil LG, Panigrahi S, J. Polym. Environ., 15, 25 (2007)
  18. Panaitescu DM, Nicolae CA, Vuluga Z, Vitelaru C, Sanporean CG, Zaharia C, Florea D, Vasilievici G, J. Ind. Eng. Chem., 37, 137 (2016)
  19. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C, Composites A, 41, 806 (2010)
  20. Ahmed GS, Gilbert M, Mainprize S, Rogerson M, Plast. Rubber Compos., 38, 13 (2009)
  21. Li HY, Wang RG, Hu HL, Liu WB, Appl. Surf. Sci., 255(5), 1894 (2008)
  22. Lee JW, Kim JH, Ji SH, Kim KS, Kim YC, Polymer, 39, 572 (2015)