화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.1, 97-102, February, 2018
표면 개질된 금나노입자의 제조 및 이의 측방유동면역 센서 응용
Preparation of Surface Functionalized Gold Nanoparticles and their Lateral Flow Immunoassay Applications
E-mail:
초록
본 연구에서는 높은 민감성을 가진 측방유동면역분석(lateral flow immunoassay) 스트립 센서를 제작하기 위하여 mercaptoundecanoic acid (MUA)와 L-lysine 단분자를 사용하여 금나노입자 표면을 개질할 수 있는 합성법을 개발하였다. 균일한 사이즈의 금나노입자를 합성하기 위하여 Turkevich-Frens 합성법을 이용하였으며 16.7 ± 2.1 nm 크기의 금나노 입자를 제조하였다. 기능화된 금나노입자의 특성을 확인하기 위하여 투과전자현미경(TEM), 자외선-가시광선 분광광도계(UV-vis spectroscopy), X선 광전자분광기(XPS), 푸리에 변환 적외선 분광기(FT-IR)를 사용하여 분석하였다. 금나노입자와 항체 간의 안정적인 접합(conjugation)을 위한 pH 및 항체의 농도 조건은 pH 7.07, 항원의 농도 10 μg/mL로 최적화되었다. B형간염 표면항원을 검출하기 위하여 측방유동면역분석 스트립 센서를 제작하였으며, 표면개질된 금나노 입자로 제작된 면역스트립 센서에서 10 ng/mL로 낮은 검출한계를 나타내었으며, 이는 기능화되지 않은 금나노입자 기반 면역스트립센서의 100 ng/mL보다 높았다.
In this work, the surface of gold nanoparticles (AuNPs) was modified with small molecules including mercaptoundecanoic acid (MUA) and L-lysine for the development of highly sensitive lateral flow (LF) sensors. Uniformly sized AuNps were synthesized by a modified Turkevich-Frens method, showing an average size of 16.7 ± 2.1 nm. Functionalized AuNPs were then characterized by transmission electron microscopy, UV-vis spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The stable conjugation of AuNPs and antibodies was obtained at pH 7.07 and the antibody concentration of 10 μg/mL. The functionalized AuNP-based LF sensor exhibited lower detection limit of 10 ng/mL for hepatitis B surface antigens than that of using the bare AuNP-based LF sensor (100 ng/mL).
  1. Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW, Phillips ST, Mirica KA, Whitesides GM, Anal. Chem., 84, 2883 (2012)
  2. Zhao Y, Cao M, McClelland JF, Shao Z, Lu M, Biosens. Bioelectron., 85, 261 (2016)
  3. Yetisen AK, Akram MS, Lowe CR, Lab Chip, 13, 2210 (2013)
  4. Hu J, Wang S, Wang L, Li F, Pingguan-Murphy BV, Lu TJ, Xu F, Biosens. Bioelectron., 54, 585 (2014)
  5. Sun J, Xianyu Y, Jiang X, Chem. Soc. Rev., 43, 6239 (2014)
  6. Toh SY, Citartan M, Gopinath SCB, Tang TH, Biosens. Bioelectron., 64, 392 (2015)
  7. Zhang S, Garcia-D’Angeli A, Brennan JP, Huo Q, Analyst, 139, 439 (2014)
  8. Hirtz C, Vialaret J, Gabelle A, Nowak N, Dauvilliers Y, Lehmann S, Sci. Rep., 6, 25162 (2016)
  9. Zhang Y, Tan C, Fei R, Liu X, Zhou Y, Chen J, Chen H, Zhou R, Hu Y, Anal. Chem., 86, 1115 (2014)
  10. Bahadır EB, Sezginturk MK, Trends Anal. Chem., 82, 286 (2016)
  11. Niemeyer CM, Angew. Chem.-Int. Edit., 40, 4128 (2001)
  12. Dykman L, Khlebtsov N, Chem. Soc. Rev., 41, 2256 (2012)
  13. Zhou W, Gao X, Liu DB, Chen XY, Chem. Rev., 115(19), 10575 (2015)
  14. Bastus NG, Comenge J, Puntes V, Langmuir, 27(17), 11098 (2011)
  15. Kim DS, Kim YT, Hong SB, Kim J, Heo NS, Lee MK, Lee SJ, Kim BI, Kim IS, Huh YS, Choi BG, Sensors, 16, 2154 (2016)
  16. Lou S, Ye J, Li K, Wu A, Analyst, 137, 1174 (2012)
  17. Zhao P, Li N, Astruc D, Coord. Chem. Rev., 257, 638 (2013)
  18. Wuithschick M, Birnbaum A, Witte S, Sztucki M, Vainio U, Pinna N, Rademann K, Emmerling F, Kraehnert R, Plote J, ACS Nano, 9, 7052 (2015)
  19. Liu XS, Huang HY, Jin Q, Ji J, Langmuir, 27(9), 5242 (2011)
  20. Syed LU, Swisher LZ, Huff H, Rochford C, Wang F, Liu J, Wu J, Richter M, Balivada S, Troyer D, Li J, Analyst, 138, 5600 (2013)
  21. Horovitz O, Mocanu A, Tomoaia G, Bobos L, Dubert D, Daian I, Yupsanis T, Tomoaia-Cotisel M, Stud. Univ. Babes-Bolyai, Chem., 52, 97 (2007)