Applied Chemistry for Engineering, Vol.29, No.1, 97-102, February, 2018
표면 개질된 금나노입자의 제조 및 이의 측방유동면역 센서 응용
Preparation of Surface Functionalized Gold Nanoparticles and their Lateral Flow Immunoassay Applications
E-mail:
초록
본 연구에서는 높은 민감성을 가진 측방유동면역분석(lateral flow immunoassay) 스트립 센서를 제작하기 위하여 mercaptoundecanoic acid (MUA)와 L-lysine 단분자를 사용하여 금나노입자 표면을 개질할 수 있는 합성법을 개발하였다. 균일한 사이즈의 금나노입자를 합성하기 위하여 Turkevich-Frens 합성법을 이용하였으며 16.7 ± 2.1 nm 크기의 금나노 입자를 제조하였다. 기능화된 금나노입자의 특성을 확인하기 위하여 투과전자현미경(TEM), 자외선-가시광선 분광광도계(UV-vis spectroscopy), X선 광전자분광기(XPS), 푸리에 변환 적외선 분광기(FT-IR)를 사용하여 분석하였다. 금나노입자와 항체 간의 안정적인 접합(conjugation)을 위한 pH 및 항체의 농도 조건은 pH 7.07, 항원의 농도 10 μg/mL로 최적화되었다. B형간염 표면항원을 검출하기 위하여 측방유동면역분석 스트립 센서를 제작하였으며, 표면개질된 금나노 입자로 제작된 면역스트립 센서에서 10 ng/mL로 낮은 검출한계를 나타내었으며, 이는 기능화되지 않은 금나노입자 기반 면역스트립센서의 100 ng/mL보다 높았다.
In this work, the surface of gold nanoparticles (AuNPs) was modified with small molecules including mercaptoundecanoic acid (MUA) and L-lysine for the development of highly sensitive lateral flow (LF) sensors. Uniformly sized AuNps were synthesized by a modified Turkevich-Frens method, showing an average size of 16.7 ± 2.1 nm. Functionalized AuNPs were then characterized by transmission electron microscopy, UV-vis spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The stable conjugation of AuNPs and antibodies was obtained at pH 7.07 and the antibody concentration of 10 μg/mL. The functionalized AuNP-based LF sensor exhibited lower detection limit of 10 ng/mL for hepatitis B surface antigens than that of using the bare AuNP-based LF sensor (100 ng/mL).
- Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW, Phillips ST, Mirica KA, Whitesides GM, Anal. Chem., 84, 2883 (2012)
- Zhao Y, Cao M, McClelland JF, Shao Z, Lu M, Biosens. Bioelectron., 85, 261 (2016)
- Yetisen AK, Akram MS, Lowe CR, Lab Chip, 13, 2210 (2013)
- Hu J, Wang S, Wang L, Li F, Pingguan-Murphy BV, Lu TJ, Xu F, Biosens. Bioelectron., 54, 585 (2014)
- Sun J, Xianyu Y, Jiang X, Chem. Soc. Rev., 43, 6239 (2014)
- Toh SY, Citartan M, Gopinath SCB, Tang TH, Biosens. Bioelectron., 64, 392 (2015)
- Zhang S, Garcia-D’Angeli A, Brennan JP, Huo Q, Analyst, 139, 439 (2014)
- Hirtz C, Vialaret J, Gabelle A, Nowak N, Dauvilliers Y, Lehmann S, Sci. Rep., 6, 25162 (2016)
- Zhang Y, Tan C, Fei R, Liu X, Zhou Y, Chen J, Chen H, Zhou R, Hu Y, Anal. Chem., 86, 1115 (2014)
- Bahadır EB, Sezginturk MK, Trends Anal. Chem., 82, 286 (2016)
- Niemeyer CM, Angew. Chem.-Int. Edit., 40, 4128 (2001)
- Dykman L, Khlebtsov N, Chem. Soc. Rev., 41, 2256 (2012)
- Zhou W, Gao X, Liu DB, Chen XY, Chem. Rev., 115(19), 10575 (2015)
- Bastus NG, Comenge J, Puntes V, Langmuir, 27(17), 11098 (2011)
- Kim DS, Kim YT, Hong SB, Kim J, Heo NS, Lee MK, Lee SJ, Kim BI, Kim IS, Huh YS, Choi BG, Sensors, 16, 2154 (2016)
- Lou S, Ye J, Li K, Wu A, Analyst, 137, 1174 (2012)
- Zhao P, Li N, Astruc D, Coord. Chem. Rev., 257, 638 (2013)
- Wuithschick M, Birnbaum A, Witte S, Sztucki M, Vainio U, Pinna N, Rademann K, Emmerling F, Kraehnert R, Plote J, ACS Nano, 9, 7052 (2015)
- Liu XS, Huang HY, Jin Q, Ji J, Langmuir, 27(9), 5242 (2011)
- Syed LU, Swisher LZ, Huff H, Rochford C, Wang F, Liu J, Wu J, Richter M, Balivada S, Troyer D, Li J, Analyst, 138, 5600 (2013)
- Horovitz O, Mocanu A, Tomoaia G, Bobos L, Dubert D, Daian I, Yupsanis T, Tomoaia-Cotisel M, Stud. Univ. Babes-Bolyai, Chem., 52, 97 (2007)