Applied Chemistry for Engineering, Vol.29, No.1, 112-116, February, 2018
Si와 알칼리 금속의 첨가에 따른 물유리의 점도 및 분자결합구조 특성변화
Effect of the Addition of Si and Alkali Metal on the Viscosity and Molecular Behavior of Water Glass
E-mail:
초록
주조공정 중 주형제조 시 점결제로 사용되는 silicate계 바인더의 주요원료 중 하나인 물유리와 첨가제(Si, 알칼리 금속) 의 혼합특성을 살펴보았다. 물유리와 첨가제 그리고 비율에 따라 제조된 혼합물은 FT-IR분석을 통해 분자결합구조를 살펴보았으며, 점도측정으로 분자구조와의 상관관계를 비교하였다. 물유리에 Si 소스의 제공은 물질 내 Si 망상결합을 촉진시켜 점도는 증가하였고, 알칼리 금속을 첨가하였을 경우에 물유리의 Si 망상결합을 억제하여 점도가 낮아졌다. 물유리와 리튬 실리케이트(lithium silicate, LS)의 혼합물의 점도는 LS의 함량이 20 wt% 이하에서는 LS의 함량이 증가 할수록 증가하였지만, 20 wt%를 초과할 경우 점차 낮아졌다. 물유리에 KOH를 첨가함으로써 점도를 낮출 수 있었으며, 콜로이달 실리카(colloidal silica, CS) 또는 potassium methyl siliconate (PMS)와의 혼합을 효과적으로 이용하는 데이용할 수 있다.
In this study, the mixing characteristics of water glass and additives (Si, alkali metal), which are one of the main raw materials of silicate based binder used in the production of molds during casting process, were examined. Molecular structures of water glass, additives and mixtures were analyzed FT-IR and viscosity measurements and their correlation were compared. The addition of Si source to the water glass accelerated the Si networking in the material and increased the viscosity. When the alkali metal was added, the viscosity of the water glass decreased by suppressing the Si networking of the water glass. Viscosities of the water glass and lithium silicate (LS) mixtures increased when the content of LS was less than 20 wt% and gradually decreased when the content was more than 20 wt%. By adding KOH to the water glass, the viscosity could be lowered and it could be used effectively to mix with colloidal silica (CS) or potassium methyl siliconate (PMS).
- Steinhauser T, US Patent 6,371,194 (2001).
- Martin W, WO Patent 2007-104469 (2007).
- Johnson CK, Tse KT, Zaretskiy LS, Algar BE, US Patent 6,299,677 (2001).
- Xia L, Zhang Y, Huang J, Adv. Mater. Res., 97, 979 (2010)
- Owusu YA, Adv. Colloid Interface Sci., 18, 57 (1982)
- Nordstrom J, Sundblom A, Jensen GV, Pedersen JS, Palmqvist A, Matic A, J. Colloid Interface Sci., 397, 9 (2013)
- Ryu Y, Lee MS, Korean J. Metals Mater., 56(1), 72 (2018)
- Liebau F, Structural Chemistry of Silicates: Structure, Bonding, and Classification, Springer-Verlag, Berlin, Germany (1985).
- Trinh TT, Jansen APJ, van Santen RA, J. Phys. Chem., 110, 23099 (2006)
- McDonald WS, Cruickshank DWJ, Acta Cryst., 22, 37 (1967)
- van Santen RA, Vogel DL, Adv. Solid-State Chem., 1, 151 (1989)
- Tenney AS, Wong J, J. Chem. Phys., 56, 5516 (1972)
- Fuss T, Mogus-Milankovic A, Ray CS, Lesher CE, Youngman R, Day DE, J. Non-Cryst. Solids, 352, 4101 (2006)
- Chen QW, Li XG, Zhang YH, Qian YT, Adv. Mater., 25, 134 (2002)
- Mahmoud MM, Folz DC, Suchicital CTA, Clark DE, J. Am. Ceram. Soc., 95(2), 579 (2012)
- Zhang S, Zhang X, Shang W, Chin. J. Polym. Sci., 33(12), 1672 (2015)