Journal of Industrial and Engineering Chemistry, Vol.59, 341-349, March, 2018
Crystallization characteristics prediction of coal slags based on SiO2.Al2O3.CaO.Fe2O3.MgO components
E-mail:
Crystallization inside the liquid slag can increase the viscosity, affecting flow down the wall which is associated with the temperature of critical viscosity (Tcv). Four groups of synthetic slags with different Si/ Al, Si + Al, CaO, Fe2O3 ratios were sorted to study the crystallization characteristics including the crystallization tendency as well as crystallization temperature (Tcrys). Samples with base.acid ratio (R > 0.7) and Si/Al in the range of 1-4 are liable to crystallize with obvious crystallization peak on DSC curve, and the influence of R is more than that of Si/Al. The crystallization temperature (Tcrys) is found to display a linear relationship with the liquidus temperature (Tliq). The deviation of real coal slag with synthetic slag is associated with the crystalline phases as well as the raw minerals present in the ash.
- Hirai M, Takebayashi K, Yoshikawa Y, Yamaguchi R, ISIJ Int., 33, 405 (1993)
- Wright S, Zhang L, Sun S, Jahanshahi S, J. Non-Cryst. Solids, 282, 15 (2001)
- OH MS, BROOKER DD, DEPAZ EF, BRADY JJ, DECKER TR, Fuel Process. Technol., 44(1-3), 191 (1995)
- Jiang Y, Ideta K, Kim J, Miyawaki J, Jung DH, Yoon SH, Mochida I, J. Ind. Eng. Chem., 22, 110 (2015)
- Corey RC, Washington US Department of the Interior, Bureau of Mines. 1964.
- Sage WL, Mcllroy JB, ASME J., 82, 145 (1960)
- Song WJ, Dong YH, Wu YQ, Zhu ZB, AIChE J., 57(10), 2921 (2011)
- Kong LX, Bai J, Bai ZQ, Guo ZX, Li W, Fuel, 109, 76 (2013)
- Wang HG, Qiu PH, Li YQ, Han ZJ, Wu SJ, Zhao GB, Energy Fuels, 26(4), 2204 (2012)
- Ilyushechkin AY, Hla SS, Roberts DG, Kinaev NN, J. Non-Cryst. Solids, 357, 893 (2011)
- Bai J, Li W, Li BQ, Fuel, 87(4-5), 583 (2008)
- Kalmanovitch DP, Williamson J, Mineral Matter and Ash in Coal, American Chemical Society, 234 (1986).
- Barrett EP, Chem. Coal Util., 1, 496 (1945)
- Nowok JW, Energy Fuels, 9(3), 534 (1995)
- Miller BG, Coal Energy Systems, Elsevier Academic Press, Burlington 232 (2005).
- Su S, Pohl JH, Holcombe D, Fuel, 82(13), 1653 (2003)
- Zachariasen W, J. Am. Chem. Soc., 54, 3841 (1932)
- Xuan WW, Whitty KJ, Guan QL, Bi DP, Zhang JS, Fuel, 137, 193 (2014)
- Xuan WW, Whitty KJ, Guan QL, Bi DP, Zhan ZH, Zhang JS, Fuel, 144, 103 (2015)
- Shen Z, Li R, Liang Q, Xu J, Liu H, Energy Fuels, 30, 5267 (2016)
- Xuan WW, Whitty KJ, Guan QL, Bi DP, Zhan ZH, Zhang JS, Energy Fuels, 28(10), 6627 (2014)
- Gan L, Zhang C, Shangguan F, Li X, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 43, 460 (2012)
- David KW, Bowen HK, Uhlmann DR, Introduction to Ceramics, 2nd edition, Wiley, New York, 1976.
- Mills KC, ISIJ Int., 33, 148 (1993)
- Harvey RD, Ruch RR, Mineral Matter and Ash in Coal, American Chemical Society, 10 (1986).
- Creelman RA, Ward CR, Schumacher G, Juniper L, Energy Fuels, 27(10), 5714 (2013)
- Matjie RH, French D, Ward CR, Pistorius PC, Li ZS, Fuel Process. Technol., 92(8), 1426 (2011)
- Song WJ, Tang LH, Zhu XD, Wu YQ, Zhu ZB, Koyama S, Energy Fuels, 24, 182 (2010)
- Lu T, Zhang L, Zhang Y, Feng Y, Li H, J. Fuel Chem. Technol., 38, 23 (2010)
- Song W, Tang L, Zhu X, Yong W, Yong R, Zhu Z, CIESC J., 60, 1781 (2009)
- Matjie RH, Li ZS, Colin RW, French D, Fuel, 87(6), 857 (2008)