- Previous Article
- Next Article
- Table of Contents
Macromolecular Research, Vol.26, No.2, 204-209, February, 2018
Nucleic Acid-Binding Fluorochromes and Nanoparticles: Structural Aspects of Binding Affinity and Fluorescence Intensity
E-mail:
This study was conducted to determine the relationship between dye structure, particularly the structural charge and flexibility, and binding affinity. We also investigated the effect of multivalency on the maximum fluorescence intensity by conjugating varying numbers of monovalent fluorochromes on nanoparticles. Fluorochrome-conjugated nanoparticles were synthesized by conjugating N-hydroxysuccinimide ester of quinolinium,4-[(3-methyl-2(3H)-benzothiazolylidene)methyl]- 1-[3-(trimethylammonio)propyl]-,iodide (TO-PRO 1 NHS ester) into aminated nanoparticles. The half maximum effective concentration (EC50) of DNA-binding fluorochromes and fluorochrome-conjugated nanoparticles for double- stranded nucleic acid (dsDNA) was investigated by fluorescence. Two important factors regulating the binding characteristics of fluorochromes were studied: the number of positive charges and the structural flexibility. Positive charge enhancement of binding affinity was observed in various systems. TO-PRO 1, which has two positive charges, showed higher binding affinity than TO. Rigid structured dyes, propidium iodide and 4′,6-diamidino-2-phenylindole (DAPI), exhibited significantly lower maximum fluorescence than TO-PRO 1, even though they both have two positive charges. The dye with three positive charges, SYTOX Green, showed higher binding affinity than TO-PRO 1. TO-PRO 1 dimer (TO-TO), which has four positive charges, showed the highest binding affinity to DNA. Flexible dyes exhibited more than 1000-fold higher fluorescence upon binding to dsDNA. The multivalency of the fluorochromes on the nanoparticles revealed that a shorter distance between fluorochromes was related to higher maximum fluorescence intensity. The fluorescence intensity of multivalent fluorochromes was substantially dependent on the distance between the monovalent sites.
Keywords:fluorochromes;DNA-binding affinity;fluorescence intensity;iron oxide nanoparticle;multivalency
- Dodani SC, Leary SC, Cobine PA, Winge DR, Chang CJ, J. Am. Ceram. Soc., 133, 8606 (2011)
- Liegler TJ, Hyun W, Yen TS, Stites DP, Clin. Diagn. Lab. Immunol., 2, 369 (1995)
- Guchelaar HJ, Vermes I, Koopmans RP, Reutelingsperger CPM, Haanen C, Cancer Chemother. Pharmacol., 42, 77 (1998)
- Galluzzi L, Kroemer G, Cell, 135, 1161 (2008)
- Berghe TV, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, Guerin CJ, Brunk UT, Declercq W, Vandenabeele P, Cell Death Differ., 17, 922 (2010)
- Lubitz I, Zikich D, Kotlyar A, Biochemistry, 49, 3567 (2010)
- Benson SC, Mathies RA, Glazer AN, Nucleic Acids Res., 21, 5720 (1993)
- Rye HS, Yue S, Wemmer DE, Quesada MA, Haugland RP, Mathies RA, Glazer AN, Nucleic Acids Res., 20, 2803 (1992)
- Wu JB, Shao C, Li X, Shi C, Li Q, Hu P, Chen YT, Dou X, Sahu D, Li W, Harada H, Zhang Y, Wang R, Zhau HE, Chung LWK, Biomaterials, 35, 8175 (2014)
- Hellebust A, Richards-Kortum R, Nanomedicine, 7, 429 (2012)
- Hyun H, Park MH, Owens EA, Wada H, Henary M, Handgraaf HJM, Vahrmeijer AL, Frangioni JV, Choi HS, Nat. Med., 21, 192 (2015)
- Yang X, Shi C, Tong R, Qian W, Zhau HE, Wang R, Zhu G, Cheng J, Yang VW, Cheng T, Henary M, Strekowski L, Chung LW, Clin. Cancer Res., 16, 2833 (2010)
- Bardhan R, Lal S, Joshi A, Halas NJ, Acc. Chem. Res., 44, 936 (2011)
- Zhong H, Zhang R, Zhang H, Zhang S, Chem. Commun., 48, 6277 (2012)
- Yi X, Wang F, Qin W, Yang X, Yuan J, Int. J. Nanomed., 9, 1347 (2014)
- Gudnason H, Dufva M, Bang DD, Wolff A, Nucleic Acids Res., 35, e127 (2007)
- Alcantara D, Guo Y, Yuan H, Goergen CJ, Chen HH, Cho H, Sosnovik DE, Josephson L, Angew. Chem.-Int. Edit., 51, 6904 (2012)
- Cho H, Alcantara D, Yuan H, Sheth RA, Chen HH, Huang P, Andersson SB, Sosnovik DE, Mahmood U, Josephson L, ACS Nano, 7, 2032 (2013)
- Yuan H, Cho H, Chen HH, Panagia M, Sosnovik DE, Josephson L, Chem. Commun., 49, 10361 (2013)
- Wilks MQ, Normandin MD, Yuan H, Cho H, Guo Y, Herisson F, Ayata C, Wooten DW, El Fakhri G, Josephson L, Bioconjugate Chem., 26, 1061 (2015)
- Yin M, Li Z, Liu Z, Ren J, Yang X, Qu X, Chem. Commun., 48, 6556 (2012)
- Chen HH, Yuan H, Cho H, Feng Y, Ngoy S, Kumar AT, Liao R, Chao W, Josephson L, Sosnovik DE, Theranostics, 7, 814 (2017)
- Cho H, Guo YY, Sosnovik DE, Josephson L, Inorg. Chem., 52(21), 12216 (2013)
- Wilson WD, Tanious FA, Barton HJ, Jones RL, Fox K, Wydra RL, Strekowski L, Biochemistry, 29, 8452 (1990)
- Chaires JB, Arch. Biochem. Biophys., 453, 26 (2006)
- Mammen M, Choi SK, Whitesides GM, Angew. Chem.-Int. Edit., 37, 2754 (1998)
- Kitov PI, Bundle DR, J. Am. Chem. Soc., 125(52), 16271 (2003)
- Burridge JM, Quarendon P, Reynolds CA, Goodford PJ, J. Mol. Graphics, 5, 165 (1987)
- Xu D, The Florida State University, 2007, pp 33-47.
- Gaugain B, Barbet J, Capelle N, Roques BP, Le Pecq JB, Biochemistry, 17, 5078 (1978)
- Silva GL, Ediz V, Yaron D, Armitage BA, J. Am. Chem. Soc., 129(17), 5710 (2007)
- Larsson A, Carlsson C, Jonsson M, Albinsson N, J. Am. Chem. Soc., 116(19), 8459 (1994)
- Roth BL, Poot M, Yue ST, Millard PJ, Appl. Environ. Microbiol., 63, 2421 (1997)
- Furstenberg A, Deligeorgiev TG, Gadjev NI, Vasilev AA, Vauthey E, Chem. Eur. J., 13, 8600 (2007)
- Armitage BA, Springer, Berlin/Heidelberg, 2005, Vol. 253, pp 55-76.
- Beisker W, Weller-Mewe EM, Nusse M, Cytometry, 37, 221 (1999)
- Yarmoluk SM, Kovalska VB, Losytskyy MY, Biotech. Histochem., 83, 131 (2008)
- Sloane NJA, Tables of Spherical Codes, published electronically at http://neilsloane.com/packings/.
- Nygren J, Svanvik N, Kubista M, Biopolymers, 46, 39 (1998)
- Prodhomme S, Demaret JP, Vinogradov S, Asseline U, Morin-Allory L, Vigny P, J. Photochem. Photobiol. B-Biol., 53, 60 (1999)
- Van Hooijdonk CA, Glade CP, Van Erp PE, Cytometry, 17, 185 (1994)
- Krishan A, J. Cell Biol., 66, 188 (1975)
- Ockleford CD, Hsi BL, Wakely J, Badley RA, Whyte A, Faulk WP, J. Immunol. Methods, 43, 261 (1981)
- Jacobsen JP, Pedersen JB, Hansen LF, Wemmer DE, Nucleic Acids Res., 23, 753 (1995)
- De Castro LFP, Zacharias M, J. Mol. Recognit., 15, 209 (2002)