화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.2, 185-191, March, 2018
리그닌 표면개질에 의한 리그닌/불포화 폴리에스터 수지 복합재의 굴곡강도 및 파괴인성 특성
Effects of Chemically Surface Modified Lignin on Flexural Strength and Fracture Toughness for Lignin/Unsaturated Polyester Resin Composites
E-mail:
초록
본 연구는 과립형태 리그닌을 allyltrimethoxy silane(VPS)로 화학적 표면개질하여 불포화 폴리에스터 수지(UPR) 복합재 내 보강재로 사용하였다. FTIR과 SEM/EDX를 통하여 리그닌 개질반응 결과를 확인하였다. 개질 전리그닌으로 보강된 UPR 복합재를 대조군으로 제조하고, 개질된 리그닌(VPS-리그닌)으로 보강된 UPR 복합재의 기계적 특성과 파괴인성 거동을 보강재 함량에 따라 고찰하였다. VPS-리그닌/UPR 복합재의 굴곡강도와 굴곡탄성률은 보강재의 함량이 증가할수록 리그닌/UPR 복합재보다 증가하였다. 또한 VPS-리그닌/UPR 복합재의 높은 임계응력세기 인자(KIC) 및 임계변형속도에너지(GIC) 결과는 복합재 내에서 보강재와 기재간 계면접착력 증가를 의미하며 이로 인해, UPR 복합재의 높은 파괴인성 특성을 보였다.
The lignin granule modified by allyltrimethoxy silane (VPS) was used to fabricate unsaturated polyester resin (UPR) composites as a reinforcing filler. The chemical surface modification of the pristine lignin granule was analyzed by FTIR and SEM/EDX. UPR composites reinforced by pristine lignin granule were prepared as the control samples and UPR composites reinforced by VPS-Lignin were prepared to study their flexural strength and fracture toughness behavior depending on the filler content. VPS-Lignin/UPR composites showed the better performance than of the pristine Lignin/ UPR composites in the mechanical properties (flexural strength and flexural modulus). And, the high values of the critical stress intensity factor (KIC) and the critical strain energy release rate (GIC) for VPS-Lignin/UPR composites implied the enhanced interfacial adhesion between UPR matrix and VPS-Lignin filler in the composites, which induced their enhanced fracture toughness.
  1. Nelson DL, Reaction Polymers: Chemistry, Technology, Application, Markets, Hanser Publication, Munich, p 153 (1992).
  2. Salamone JC, Polymeric Materials Encyclopedia, CRC Press, Boca Raton, FL, p 8476 (1996).
  3. Chirayil CJ, Joy J, Mathew L, Koetz J, Thomas S, Ind. Crop. Prod., 56, 246 (2014)
  4. Chirayil CJ, Mathew L, Hassan PA, Mozetic M, Thomas S, Int. J. Biol. Macromol., 69, 274 (2014)
  5. Bledzki AK, Gassan J, Prog. Polym. Sci, 24, 221 (1991)
  6. Canetti M, Bertini F, Compos. Sci. Technol., 67, 3151 (2007)
  7. Morandim-Giannetti AA, Agnelli JAM, Lancas BZ, Magnabosco R, Casarin SA, Bettini SHP, Carbohydr. Polym., 87, 2563 (2012)
  8. Graupner N, Fischer H, Ziegmann G, Mussig J, Composites: Part B, 66, 117 (2014)
  9. Gradwell SE, Renneckar S, Esker AR, Heinze T, Gatenholm P, Vaca-Garcia C, Glasser W, C. R. Biol., 327, 945 (2004)
  10. Nishino T, Matsuda I, Hirao K, Macromolecules, 37(20), 7683 (2004)
  11. Kumar MNS, Mohanty AK, Erickson L, Misra M, J. Biobased Mater. Bio., 3, 1 (2009)
  12. Gindl W, Keckes J, Polymer, 46(23), 10221 (2005)
  13. Laurichesse S, Averous L, Prog. Polym. Sci, 39, 1266 (2014)
  14. Thakur VK, Thakur MK, Gupta RK, Carbohydr. Polym., 97, 18 (2013)
  15. Faria FA, Evtuguin DV, Rudnitskaya A, Gomes MT, Oliveira JA, Graca MPF, Costa LC, Polym. Int., 61, 788 (2012)
  16. Cerrutti BM, de Souza CS, Castellan A, Ruggiero R, Frollini E, Ind. Crop. Prod., 36, 108 (2012)
  17. Raschip IE, Hitruc EG, Vasile C, High Perform. Polym., 23, 219 (2011)
  18. Li Y, Cao XD, Qian XL, Chen Y, Liu SQ, J. Electroanal. Chem., 686, 7 (2012)
  19. Raschip IE, Hitruc GE, Vasile C, Popescu MC, Int. J. Biol. Macromol., 54, 230 (2013)
  20. Gadioli R, Morais JA, Waldman WR, Polym. Degrad. Stabil., 108, 23 (2014)
  21. Kadla JF, Kubo S, Compos. Pt. A-Appl. Sci. Manuf., 35, 395 (2004)
  22. Yeo JS, Seong DW, Hwang SH, Elast. Compos., 50, 62 (2015)
  23. Yeo JS, Seong DW, Hwang SH, J. Ind. Eng. Chem., 31, 80 (2015)
  24. Sangthong S, Pongprayoon T, Yanumet N, Compos. Pt. A-Appl. Sci. Manuf., 40, 687 (2009)
  25. Yin Q, Yang W, Sun C, Di M, Bioresources, 7, 5737 (2012)
  26. Simionescu CI, Rusan V, Macoveanu MM, Cazacu G, Lipsa R, Vasile C, Stoleriu A, Ioanid A, Compos. Sci. Technol., 48, 317 (1993)
  27. Griffith AA, Phil. Trans. R. Soc. A, 221, 163 (1921)
  28. Inglis CE, Trans. Roy. Inst. Naval Arch., 55, 219 (1913)