화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.2, 288-297, March, 2018
멜라민-포스페이트 코팅 무기난연제를 함유한 폴리우레탄 폼의 열안정성 평가
Thermal Stability of Polyurethane Foams Infused with Melamine-phosphate Coated Inorganic Flame Retardants
E-mail:
초록
폴리우레탄 폼의 열안정성 향상을 위해 다공성화시킨 카올린에 melamine-phosphate 난연제를 코팅시켜 난연 무기소재(kaolin-melamine phosphate, K-MP)를 제조하였으며, 시판 MP 난연제와 K-MP를 각각 첨가하여 폴리우레탄폼을 제조하였다. TGA를 이용하여 난연제에 따른 우레탄폼의 열안정성을 비교하였으며, 기본 우레탄폼의 90 wt% 가 분해되는 온도에서 장기열안정성을 분석하였다. 기본 폴리우레탄 폼과 난연제가 첨가된 폼의 TGA 측정결과, 기본 폴리우레탄 폼의 무게잔량이 19.1 wt%로 가장 적었으며, K-MP와 시판 MP의 7.9 wt% 첨가 샘플에서 K-MP 첨가 폴리우레탄 폼의 무게잔량은 26.3 wt%으로 시판 MP의 무게잔량인 23.4 wt%보다 많은 무게잔량을 보유하였다. 또한 난연제 첨가 폴리우레탄 폼에서의 초기 분해가 기본 폴리우레탄 폼보다 빨리 진행되었지만, 장기간 유지했을 경우 분해 속도가 점차 줄어들어 기본 폴리우레탄 폼보다 장기적인 열안정성을 보였다.
The thermal stability of rigid polyurethane foam (r-PUF) depends on the chemical properties including polyol, isocyanate, and flame-retardants. In this study, melamine-phosphate flame-retardants coated with porous kaolin (K-MP) in aqueous solution were synthesized to compare the long-term thermal stability with commercial melamine-phosphate (MP) containing r-PUF. Thermogravimetric analysis (TGA) was mainly employed to estimate the long-term thermal stability of r-PUF by flame-retardants at pyrolytic temperature of 90 wt% loss. It was shown that MP based r-PUF holds the lowest remaining weight of 19.1 wt%. The TGA data further confirmed that K-MP based r-PUF (MP 7.9 wt%) holds 26.3 wt%, which shows lower decomposition rate than MP based r-PUF of 23.4 wt% after the thermal test. Moreover, r-PUF with fire retardants had reached early decomposition stage faster than r-PUF but had gradually decreased decomposition rate in the long-run.
  1. Yang R, Hu W, Xu L, Song Y, Li J, Polym. Degrad. Stabil., 122, 102 (2015)
  2. Zhang M, Luo Z, Zhang J, Chen S, Zhou Y, Polym. Degrad. Stabil., 120, 427 (2015)
  3. Xi W, Qian L, Chen Y, Wang J, Liu X, Polym. Degrad. Stabil., 122, 36 (2015)
  4. Zhao C, Yan Y, Hu Z, Li L, Fan X, Constr. Build. Mater., 93, 309 (2015)
  5. Estravis S, Tirado-Mediavilla J, Santiago-Calvo M, Ruiz-Herrero L, Villafane F, Rodriguez-Perez MA, Eur. Polym. J., 80, 1 (2016)
  6. Song L, Hu Y, Tang Y, Zhang R, Chen Z, Fan W, Polym. Degrad. Stabil., 87, 111 (2005)
  7. Lee HI, Lee KY, Polym. Korea, 39(4), 529 (2015)
  8. Bae WT, Jung WD, Cho CK, J. Korean Ceram. Soc., 29, 347 (1992)
  9. Lee SH, Chung HY, Kim DI, Noh TJ, J. Korean Soc. Safety, 26, 47 (2011)
  10. Park EJ, Park HJ, Kim DH, J. Korea Acad. Industr. Coop. Soc., 16, 914 (2015)
  11. Harikrishnan G, Singh SN, Kiesel E, Macosko CW, Polymer, 51(15), 3349 (2010)
  12. Nazeran N, Moghaddas J, J. Non-Cryst. Solids, 461, 1 (2017)
  13. Zhai WT, Yu J, Wu LC, Ma WM, He JS, Polymer, 47(21), 7580 (2006)
  14. Leung SN, Wong A, Wang LC, Park CB, J. Supercrit. Fluids, 63, 187 (2012)
  15. Verdolotti L, Lavorgna M, Lamanna R, Di Maio E, Iannace S, Polymer, 56, 20 (2015)
  16. Thirumal M, Khastgir D, Nando GB, Naik YP, Singha NK, Polym. Degrad. Stabil., 95, 1138 (2010)
  17. Shufen L, Zhi J, Kaijun Y, Shuqin Y, Chow WK, Polym. -Plast. Technol. Eng., 45, 95 (2006)
  18. Flame, Morgan AB, Wilkie CA, Flame retardant polymer nanocomposites, Wiley-Interscience, USA, 2007.
  19. Xiong J, Liu Y, Yang X, Wang X, Polym. Degrad. Stabil., 86, 549 (2004)
  20. Berta M, Lindsay C, Pans G, Camino G, Polym. Degrad. Stabil., 91, 1179 (2006)
  21. Ullah S, Ahmad F, Shariff AM, Bustam MA, Polym. Degrad. Stabil., 110, 91 (2014)
  22. Thuechart T, Keawwattana W, Adv. Mater. Res., 844, 334 (2014)
  23. Wu CS, Liu YL, Chiu YC, Chiu YS, Polym. Degrad. Stabil., 78, 41 (2002)
  24. Cai YB, Wei QF, Huang FL, Lin SL, Chen F, Gao WD, Renew. Energy, 34(10), 2117 (2009)