Macromolecular Research, Vol.26, No.3, 226-232, March, 2018
High-Efficiency Flexible and Foldable Paper-Based Supercapacitors Using Water-Dispersible Polyaniline-Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) and Poly(vinyl alcohol) as Conducting Agent and Polymer Matrix
E-mail:
For the first time, common printing paper is converted to electrode for high-performance flexible and foldable electrochemical supercapacitor using waterdispersible conductive polymer, polyaniline-poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PANI-PAAMPSA) and poly(vinyl alcohol) (PVA) as conducting agent and polymer matrix, respectively. PANI-PAAMPSA is used to convert insulating paper to conductive substrate while PVA provides ion channels for electrolyte as well as mechanical durability for paper substrate. The paper-based supercapacitors exhibit excellent electrochemical energy storage capability. The maximum mass and area specific capacitances of the paper-based supercapacitors reached up to 41 F g-1 and 45 mF cm-2 at 20 mV s-1, respectively. In addition, the PANI-PAAMPSA/ PVA/paper-based supercapacitors demonstrate high mechanical durability and flexibility during the bending tests. The specific capacitance of the paper-based supercapacitors are changed up to 16 % compared to the initial value as they are bent progressively from 0° to 100°. The excellent electrochemical stability of the paper-based supercapacitors is attributed to high water dispersibility and conductivity of PANI-PAAMPSA. The high mechanical durability is attributed to employment of PVA as robust polymer matrix allowing for ion channels of electrolyte. Our work can open up opportunities of next-generation paper-based electronics and energy storage devices.
Keywords:polyaniline-poly(2-acrylamido-2-methyl-1-propanesulfonic acid);poly(vinyl alcohol);paper;supercapacitor;energy storage devices
- Hu LB, Cui Y, Energy Environ. Sci., 5, 6423 (2012)
- Kang YJ, Chung H, Han CH, Kim W, Nanotechnology, 23, 065401 (2012)
- Andersson P, Nilsson D, Svensson PO, Chen MX, Malmstrom A, Remonen T, Kugler T, Berggren M, Adv. Mater., 14(20), 1460 (2002)
- Martinez AW, Phillips ST, Butte MJ, Whitesides GM, Angew. Chem.-Int. Edit., 46, 1318 (2007)
- Eder F, Klauk H, Halik M, Zschieschang U, Schmid G, Dehm C, Appl. Phys. Lett., 84, 2673 (2004)
- Andersson P, Nilsson D, Svensson PO, Chen MX, Malmstrom A, Remonen T, Kugler T, Berggren M, Adv. Mater., 14(20), 1460 (2002)
- Kim YH, Moon DG, Han JI, IEEE Electron Device Lett., 25, 702 (2004)
- Wang L, Chen W, Xu D, Shim BS, Zhu Y, Sun F, Liu L, Peng C, Jin Z, Xu C, Nano Lett., 9, 4147 (2009)
- Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui LF, Cui Y, Proc. Natl. Acad. Sci. U.S.A., 106, 21490 (2009)
- Yuan LY, Xiao X, Ding TP, Zhong JW, Zhang XH, Shen Y, Hu B, Huang YH, Zhou J, Wang ZL, Angew. Chem.-Int. Edit., 51, 4934 (2012)
- Yoo JE, Cross JL, Bucholz TL, Lee KS, Espe MP, Loo YL, J. Mater. Chem., 17, 1268 (2007)
- Zhang GQ, Zhang XG, Solid State Ion., 160(1-2), 155 (2003)
- Gao H, Lian K, J. Power Sources, 196(20), 8855 (2011)
- Kim JY, Lee CS, Han JH, Cho JW, Bae J, Electrochem. Solid State Lett., 14(4), A56 (2011)
- Patil DS, Shaikh JS, Dalavi DS, Kalagi SS, Patil PS, Mater. Chem. Phys., 128(3), 449 (2011)
- Yoo JE, University of Texas at Austin, the University of Texas at Austin, Ph. D. Dissertation, 250 (2009).
- Tarver J, Yoo JE, Dennes TJ, Schwartz J, Loo YL, Chem. Mater., 21, 280 (2008)
- Kaempgen M, Ma J, Gruner G, Wee G, Mhaisalkar SG, Appl. Phys. Lett., 90, 264104 (2007)
- Yoon Y, Lee K, Baik C, Yoo H, Min M, Park Y, Lee SM, Lee H, Adv. Mater., 25(32), 4437 (2013)
- Ryu KS, Lee YG, Han KS, Park YJ, Kang MG, Park NG, Chang SH, Solid State Ion., 175(1-4), 765 (2004)
- Ryu KS, Kim KM, Park NG, Park YJ, Chang SH, J. Power Sources, 103(2), 305 (2002)
- Chen WC, Wen TC, Teng HS, Electrochim. Acta, 48(6), 641 (2003)
- Zhang L, Shi G, J. Phys. Chem., 115, 17206 (2011)
- Chen CM, Zhang Q, Huang CH, Zhao XC, Zhang BS, Kong QQ, Wang MZ, Yang YG, Cai R, Su DS, Chem. Commun., 48, 7149 (2012)
- Yang XW, Zhu JW, Qiu L, Li D, Adv. Mater., 23(25), 2833 (2011)
- Luo Y, Jiang J, Zhou W, Yang H, Luo J, Qi X, Zhang H, Denis Y, Li C, Yu T, J. Mater. Chem., 22, 8634 (2012)
- Zhang XY, Wang XY, Jiang LL, Wu H, Wu C, Su JC, J. Power Sources, 216, 290 (2012)
- Peng SJ, Li LL, Tan HT, Cai R, Shi WH, Li CC, Mhaisalkar SG, Srinivasan M, Ramakrishna S, Yan QY, Adv. Funct. Mater., 24(15), 2155 (2014)
- Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G, Nano Lett., 9, 1872 (2009)
- Dong B, He BL, Xu CL, Li HL, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 143, 7 (2007)
- Frackowiak E, Metenier K, Bertagna V, Beguin F, Appl. Phys. Lett., 77, 2421 (2000)
- Niu H, Zhou D, Yang X, Li X, Wang Q, Qu F, J. Mater. Chem. A, 3, 18413 (2015)
- Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC, Phys. Chem. Chem. Phys., 13, 17615 (2011)
- Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano Lett., 8, 3498 (2008)
- Chen Y, Zhang X, Zhang D, Yu P, Ma Y, Carbon, 49, 573 (2011)
- Claye A, Fischer JE, Metrot A, Chem. Phys. Lett., 330(1-2), 61 (2000)
- Ng SH, Wang J, Guo ZP, Wang GX, Liu HK, Electrochim. Acta, 51(1), 23 (2005)