화학공학소재연구정보센터
Macromolecular Research, Vol.26, No.3, 226-232, March, 2018
High-Efficiency Flexible and Foldable Paper-Based Supercapacitors Using Water-Dispersible Polyaniline-Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) and Poly(vinyl alcohol) as Conducting Agent and Polymer Matrix
E-mail:
For the first time, common printing paper is converted to electrode for high-performance flexible and foldable electrochemical supercapacitor using waterdispersible conductive polymer, polyaniline-poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PANI-PAAMPSA) and poly(vinyl alcohol) (PVA) as conducting agent and polymer matrix, respectively. PANI-PAAMPSA is used to convert insulating paper to conductive substrate while PVA provides ion channels for electrolyte as well as mechanical durability for paper substrate. The paper-based supercapacitors exhibit excellent electrochemical energy storage capability. The maximum mass and area specific capacitances of the paper-based supercapacitors reached up to 41 F g-1 and 45 mF cm-2 at 20 mV s-1, respectively. In addition, the PANI-PAAMPSA/ PVA/paper-based supercapacitors demonstrate high mechanical durability and flexibility during the bending tests. The specific capacitance of the paper-based supercapacitors are changed up to 16 % compared to the initial value as they are bent progressively from 0° to 100°. The excellent electrochemical stability of the paper-based supercapacitors is attributed to high water dispersibility and conductivity of PANI-PAAMPSA. The high mechanical durability is attributed to employment of PVA as robust polymer matrix allowing for ion channels of electrolyte. Our work can open up opportunities of next-generation paper-based electronics and energy storage devices.
  1. Hu LB, Cui Y, Energy Environ. Sci., 5, 6423 (2012)
  2. Kang YJ, Chung H, Han CH, Kim W, Nanotechnology, 23, 065401 (2012)
  3. Andersson P, Nilsson D, Svensson PO, Chen MX, Malmstrom A, Remonen T, Kugler T, Berggren M, Adv. Mater., 14(20), 1460 (2002)
  4. Martinez AW, Phillips ST, Butte MJ, Whitesides GM, Angew. Chem.-Int. Edit., 46, 1318 (2007)
  5. Eder F, Klauk H, Halik M, Zschieschang U, Schmid G, Dehm C, Appl. Phys. Lett., 84, 2673 (2004)
  6. Andersson P, Nilsson D, Svensson PO, Chen MX, Malmstrom A, Remonen T, Kugler T, Berggren M, Adv. Mater., 14(20), 1460 (2002)
  7. Kim YH, Moon DG, Han JI, IEEE Electron Device Lett., 25, 702 (2004)
  8. Wang L, Chen W, Xu D, Shim BS, Zhu Y, Sun F, Liu L, Peng C, Jin Z, Xu C, Nano Lett., 9, 4147 (2009)
  9. Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui LF, Cui Y, Proc. Natl. Acad. Sci. U.S.A., 106, 21490 (2009)
  10. Yuan LY, Xiao X, Ding TP, Zhong JW, Zhang XH, Shen Y, Hu B, Huang YH, Zhou J, Wang ZL, Angew. Chem.-Int. Edit., 51, 4934 (2012)
  11. Yoo JE, Cross JL, Bucholz TL, Lee KS, Espe MP, Loo YL, J. Mater. Chem., 17, 1268 (2007)
  12. Zhang GQ, Zhang XG, Solid State Ion., 160(1-2), 155 (2003)
  13. Gao H, Lian K, J. Power Sources, 196(20), 8855 (2011)
  14. Kim JY, Lee CS, Han JH, Cho JW, Bae J, Electrochem. Solid State Lett., 14(4), A56 (2011)
  15. Patil DS, Shaikh JS, Dalavi DS, Kalagi SS, Patil PS, Mater. Chem. Phys., 128(3), 449 (2011)
  16. Yoo JE, University of Texas at Austin, the University of Texas at Austin, Ph. D. Dissertation, 250 (2009).
  17. Tarver J, Yoo JE, Dennes TJ, Schwartz J, Loo YL, Chem. Mater., 21, 280 (2008)
  18. Kaempgen M, Ma J, Gruner G, Wee G, Mhaisalkar SG, Appl. Phys. Lett., 90, 264104 (2007)
  19. Yoon Y, Lee K, Baik C, Yoo H, Min M, Park Y, Lee SM, Lee H, Adv. Mater., 25(32), 4437 (2013)
  20. Ryu KS, Lee YG, Han KS, Park YJ, Kang MG, Park NG, Chang SH, Solid State Ion., 175(1-4), 765 (2004)
  21. Ryu KS, Kim KM, Park NG, Park YJ, Chang SH, J. Power Sources, 103(2), 305 (2002)
  22. Chen WC, Wen TC, Teng HS, Electrochim. Acta, 48(6), 641 (2003)
  23. Zhang L, Shi G, J. Phys. Chem., 115, 17206 (2011)
  24. Chen CM, Zhang Q, Huang CH, Zhao XC, Zhang BS, Kong QQ, Wang MZ, Yang YG, Cai R, Su DS, Chem. Commun., 48, 7149 (2012)
  25. Yang XW, Zhu JW, Qiu L, Li D, Adv. Mater., 23(25), 2833 (2011)
  26. Luo Y, Jiang J, Zhou W, Yang H, Luo J, Qi X, Zhang H, Denis Y, Li C, Yu T, J. Mater. Chem., 22, 8634 (2012)
  27. Zhang XY, Wang XY, Jiang LL, Wu H, Wu C, Su JC, J. Power Sources, 216, 290 (2012)
  28. Peng SJ, Li LL, Tan HT, Cai R, Shi WH, Li CC, Mhaisalkar SG, Srinivasan M, Ramakrishna S, Yan QY, Adv. Funct. Mater., 24(15), 2155 (2014)
  29. Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G, Nano Lett., 9, 1872 (2009)
  30. Dong B, He BL, Xu CL, Li HL, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 143, 7 (2007)
  31. Frackowiak E, Metenier K, Bertagna V, Beguin F, Appl. Phys. Lett., 77, 2421 (2000)
  32. Niu H, Zhou D, Yang X, Li X, Wang Q, Qu F, J. Mater. Chem. A, 3, 18413 (2015)
  33. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC, Phys. Chem. Chem. Phys., 13, 17615 (2011)
  34. Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano Lett., 8, 3498 (2008)
  35. Chen Y, Zhang X, Zhang D, Yu P, Ma Y, Carbon, 49, 573 (2011)
  36. Claye A, Fischer JE, Metrot A, Chem. Phys. Lett., 330(1-2), 61 (2000)
  37. Ng SH, Wang J, Guo ZP, Wang GX, Liu HK, Electrochim. Acta, 51(1), 23 (2005)