Macromolecular Research, Vol.26, No.3, 254-262, March, 2018
The Effects of Compatibilizers on the Morphological, Mechanical, and Optical Properties of Biaxially Oriented Poly(ethylene terephthalate)/Syndiotactic Polystyrene Blend Films
E-mail:
In this study, the effects of three different types of compatibilizers on the morphological, mechanical, and optical properties of poly(ethylene terephthalate) (PET) and syndiotactic-polystyrene (s-PS) (70/30, wt%) blends and biaxially oriented blend films of the two polymers were investigated. The morphological results of the PET/s-PS (70/30) blends revealed that when the 5 phr polystyrene-g-oxazoline (PS-g-OXA) was used as a compatibilizer, the domain size showed minimum. The mechanical studies of the PET/s-PS (70/30) blends showed that when 5 phr PS-g-OXA was used, increased tensile strength was obtained. The transmittance of the blend film showed the highest value (83.7%) for the biaxially oriented PET/s-PS (70/30) blend films with the PS-g-OXA (5 phr), compared with that of the blends without compatibilizer (70.8%), or with the styrene-co-maleic anhydride as a compatibilizer, at the wavenumber of 600 nm. The tensile strength of the biaxially oriented PET/s-PS (70/30) blend films also showed the highest value when PS-g-OXA (5 phr) was used as a compatibilizer. The morphological, optical, and mechanical results of the PET/s-PS (70/30) blends and biaxially oriented blend films of the two polymers showed that PS-g-OXA was the most effective compatibilizer, and that the optimum compatibilizer content was 5 phr.
- Paul DR, Newman S, Polymer Blends, Academic Press, New York, 1978.
- Lee S, Park OO, Polymer, 42(15), 6661 (2001)
- Yoon KH, Lee HW, Park OK, J. Appl. Polym. Sci., 70(2), 389 (1998)
- Song JO, Jeon MY, Kim CK, Macromol. Res., 15(7), 640 (2007)
- Park SJ, Macromol. Res., 17(8), 585 (2009)
- Adegbola TA, Rotimi SE, Suprakas SR, J. Appl. Polym. Sci., 133, 43777 (2016)
- Lee HS, Kim ES, Macromolecules, 38(4), 1196 (2005)
- Jang MG, Lee YK, Kim WN, Macromol. Res., 23(10), 916 (2015)
- Kim JM, Jang MG, Park DH, Kim WN, J. Appl. Polym. Sci., 133, 43856 (2016)
- Lim SJ, Lee JG, Hur SH, Kim WN, Macromol. Res., 22(6), 632 (2014)
- Yoo JE, Kim Y, Kim CK, Lee JW, Macromol. Res., 11(5), 303 (2003)
- Cai W, Ma X, Guo J, Peng X, Zhang S, Qiu Z, Ying J, Wang J, J. Appl. Polym. Sci., 134, 45163 (2017)
- Nevalainen K, MacKerron DH, Everall NJ, Kuusipalo J, Mater. Chem. Phys., 101(1), 103 (2007)
- Ito K, Nonomura C, Yamashita K, Suzuki T, Chinwanitcharoen C, Yamada T, Ishihara H, J. Appl. Polym. Sci., 92(2), 1243 (2004)
- Prattipati V, Hu YS, Bandi S, Schiraldi DA, Hiltner A, Baer E, Mehta S, J. Appl. Polym. Sci., 97(3), 1361 (2005)
- Yoo SJ, Lee SH, Jeon M, Lee HS, Kim WN, Macromol. Res., 21(11), 1182 (2013)
- Fowler MW, Baker WE, Polym. Eng. Sci., 28, 1427 (1988)
- Wang H, Qian Q, Jiang X, Liu X, Xiao L, Huang B, J. Appl. Polym. Sci., 126, E265 (2012)
- James CD, Jeynes C, Barradas NP, Clifton L, Dalgliesh RM, Smith RF, Sankey SW, Hutchings LR, Thompson RL, React. Funct. Polym., 89, 40 (2015)
- Wang J, Zhu FM, Li HM, Lin S, J. Appl. Polym. Sci., 86(3), 656 (2002)
- Lotz B, Polymer, 56, 245 (2015)
- Park I, Barlow JW, Paul DR, J. Polym. Sci. B: Polym. Phys., 30, 1021 (1992)
- Nesterov AE, Lipatov YS, Polymer, 40(5), 1347 (1999)
- Lee JB, Lee YK, Choi GD, Na SW, Park TS, Kim WN, Polym. Degrad. Stabil., 96, 553 (2011)
- Liu F, Zeng SQ, Zhou HM, Li JH, J. Appl. Polym. Sci., 125(1), 731 (2012)
- Pham QT, Petiaud R, Waton H, Llauro-Darricades MF, Proton and Carbon NMR Spectra of Polymers, Biddles Ltd, London, 1991.
- Russell GA, Henrichs PM, Hewitt JM, Grashof HR, Sandhu MA, Macromolecules, 14, 1764 (1981)
- UryuT, Kawamura T, Matsuzaki K, J. Polym. Sci., Polym. Chem. Ed., 17, 2019 (1979)
- Jakisch L, Komber H, Wursche R, Bohme F, J. Appl. Polym. Sci., 94(5), 2170 (2004)
- Zhang Y, Rhee KY, Park SJ, Compos. Part B: Eng., 114, 111 (2017)
- Zhang Y, Li X, Ge X, Deng F, Cho UR, Macromol. Res., 23(10), 952 (2015)
- Yoo TW, Yoon HG, Choi SJ, Kim MS, Kim YH, Kim WN, Macromol. Res., 18(6), 583 (2010)