화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.4, 1019-1025, April, 2018
Hydrothermally synthesized highly dispersed Na2Ti3O7 nanotubes and their photocatalytic degradation and H2 evolution activity under UV and simulated solar light irradiation
E-mail:,
Photocatalytic water splitting technologies are currently being considered for alternative energy sources. However, the strong demand for a high H2 production rate will present conflicting requirements of excellent photoactivity and low-cost photocatalysts. The first alternative may be abundant nanostructured titanate-related materials as a photocatalyst. Here, we report highly dispersed Na2Ti3O7 nanotubes synthesized via a facile hydrothermal route for photocatalytic degradation of Rhodamine B (RhB) and the water splitting under UV-visible light irradiation. Compared with commercial TiO2, the nanostructured Na2Ti3O7 demonstrated excellent photodegradation and water splitting performance, thus addressing the need for low-cost photocatalysts. The as-synthesized Na2Ti3O7 nanotubes exhibited desirable photodegradation, and rate of H2 production was 1,755 μmol·g-1·h-1 and 1,130 μmol·g-1·h-1 under UV and simulated solar light irradiation, respectively; the resulting as-synthesized Na2Ti3O7 nanotubes are active in UV light than that of visible light response.
  1. Hayashi H, Nakamura T, Ebina T, J. Ceram. Soc. Jpn., 124(1), 74 (2016)
  2. Sauvet AL, Baliteau S, Lopez C, Fabry P, J. Solid State Chem., 177, 4508 (2004)
  3. Umek P, Korosec RC, Jancar B, Dominko R, Arcon D, J. Nanosci. Nanotechnol., 7, 3502 (2007)
  4. Preda S, Rutar M, Umek P, Zaharescu M, Mater. Res. Bull., 71, 98 (2015)
  5. Rudola A, Sharma N, Balaya P, Electrochem. Commun., 61, 10 (2015)
  6. Anwer S, Huang Y, liu J, Liu J, Xu M, Wang Z, Chen R, Zhang J, Wu F, ACS Appl. Mater. Interfaces, 9(13), 11669 (2017)
  7. Yu YT, Korean J. Chem. Eng., 20(5), 850 (2003)
  8. Corcoran DJD, Tunstall DP, Irvine JTS, Solid State Ion., 136-137, 297 (2000)
  9. Ogura S, Kohno M, Sato K, Inoue Y, J. Mater. Chem., 8, 2335 (1998)
  10. Wei YS, Shen LB, Wang ZM, Yang WD, Zhu H, Liu HT, Int. J. Hydrog. Energy, 36(8), 5088 (2011)
  11. Xu CY, Wu J, Zhang P, Hu SP, Cui JX, Wang ZQ, Huang YD, Zhen L, Cryst. Eng. Commun., 15, 3448 (2013)
  12. Izawa H, Kikkawa S, Koizumi M, J. Phys. Chem., 86, 5023 (1982)
  13. Zhang YP, Guo L, Yang SH, Chem. Commun., 50, 14029 (2014)
  14. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Langmuir, 14(12), 3160 (1998)
  15. Zhang Z, Goodall JBM, Brown S, Karlsson L, Clark RJH, Hutchison JL, Rehman IU, Darr JA, Dalton Trans., 39, 711 (2010)
  16. Wang W, Yu C, Lin Z, Hou J, Zhu H, Jiao S, Nanoscale, 5, 594 (2013)
  17. Deepak TH, Subash D, Anjusree GS, Pai KRN, Nair SV, Nair AS, ACS Sustainable Chem. Eng., 2(2), 2772 (2014)
  18. Sujaridworakun P, Larpkiattaworn S, Saleepalin S, Wasanapiarnpong T, Adv. Powder Technol., 23(6), 752 (2012)
  19. Etacheri V, Valentin CD, Schneider J, Bahnemann D, Pillai SC, J. Photochem. Photobiol. C: Photochem. Rev., 25, 1 (2015)
  20. Vattikuti SVP, Byon C, Reddy CV, Ravikumar RVSSN, RSC Adv., 5, 86675 (2015)