Korean Journal of Chemical Engineering, Vol.35, No.4, 1019-1025, April, 2018
Hydrothermally synthesized highly dispersed Na2Ti3O7 nanotubes and their photocatalytic degradation and H2 evolution activity under UV and simulated solar light irradiation
E-mail:,
Photocatalytic water splitting technologies are currently being considered for alternative energy sources. However, the strong demand for a high H2 production rate will present conflicting requirements of excellent photoactivity and low-cost photocatalysts. The first alternative may be abundant nanostructured titanate-related materials as a photocatalyst. Here, we report highly dispersed Na2Ti3O7 nanotubes synthesized via a facile hydrothermal route for photocatalytic degradation of Rhodamine B (RhB) and the water splitting under UV-visible light irradiation. Compared with commercial TiO2, the nanostructured Na2Ti3O7 demonstrated excellent photodegradation and water splitting performance, thus addressing the need for low-cost photocatalysts. The as-synthesized Na2Ti3O7 nanotubes exhibited desirable photodegradation, and rate of H2 production was 1,755 μmol·g-1·h-1 and 1,130 μmol·g-1·h-1 under UV and simulated solar light irradiation, respectively; the resulting as-synthesized Na2Ti3O7 nanotubes are active in UV light than that of visible light response.
- Hayashi H, Nakamura T, Ebina T, J. Ceram. Soc. Jpn., 124(1), 74 (2016)
- Sauvet AL, Baliteau S, Lopez C, Fabry P, J. Solid State Chem., 177, 4508 (2004)
- Umek P, Korosec RC, Jancar B, Dominko R, Arcon D, J. Nanosci. Nanotechnol., 7, 3502 (2007)
- Preda S, Rutar M, Umek P, Zaharescu M, Mater. Res. Bull., 71, 98 (2015)
- Rudola A, Sharma N, Balaya P, Electrochem. Commun., 61, 10 (2015)
- Anwer S, Huang Y, liu J, Liu J, Xu M, Wang Z, Chen R, Zhang J, Wu F, ACS Appl. Mater. Interfaces, 9(13), 11669 (2017)
- Yu YT, Korean J. Chem. Eng., 20(5), 850 (2003)
- Corcoran DJD, Tunstall DP, Irvine JTS, Solid State Ion., 136-137, 297 (2000)
- Ogura S, Kohno M, Sato K, Inoue Y, J. Mater. Chem., 8, 2335 (1998)
- Wei YS, Shen LB, Wang ZM, Yang WD, Zhu H, Liu HT, Int. J. Hydrog. Energy, 36(8), 5088 (2011)
- Xu CY, Wu J, Zhang P, Hu SP, Cui JX, Wang ZQ, Huang YD, Zhen L, Cryst. Eng. Commun., 15, 3448 (2013)
- Izawa H, Kikkawa S, Koizumi M, J. Phys. Chem., 86, 5023 (1982)
- Zhang YP, Guo L, Yang SH, Chem. Commun., 50, 14029 (2014)
- Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Langmuir, 14(12), 3160 (1998)
- Zhang Z, Goodall JBM, Brown S, Karlsson L, Clark RJH, Hutchison JL, Rehman IU, Darr JA, Dalton Trans., 39, 711 (2010)
- Wang W, Yu C, Lin Z, Hou J, Zhu H, Jiao S, Nanoscale, 5, 594 (2013)
- Deepak TH, Subash D, Anjusree GS, Pai KRN, Nair SV, Nair AS, ACS Sustainable Chem. Eng., 2(2), 2772 (2014)
- Sujaridworakun P, Larpkiattaworn S, Saleepalin S, Wasanapiarnpong T, Adv. Powder Technol., 23(6), 752 (2012)
- Etacheri V, Valentin CD, Schneider J, Bahnemann D, Pillai SC, J. Photochem. Photobiol. C: Photochem. Rev., 25, 1 (2015)
- Vattikuti SVP, Byon C, Reddy CV, Ravikumar RVSSN, RSC Adv., 5, 86675 (2015)