화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.56, No.2, 222-228, April, 2018
일정압력하에서 1-propanol/benzene 계의 기-액 상평형
Isobaric Vapor-Liquid Equilibrium of 1-propanol and Benzene System at Subatmospheric Pressures
E-mail:
초록
석유화학산업의 대표적인 물질로 쓰이는 벤젠은 각종 화학 제품의 기초 물질이다. 그러나 일반적으로 벤젠은 석유 화학 산업에서 순수 물질로 존재하지 못하고 알코올류와 벤젠 혼합물로 존재하게 된다. 또한 알코올을 한 성분으로 하는 혼합물은 공비 혼합물이 생성되기 때문에 분리 정제를 위해서는 상평형 데이터가 필수적이다. 본 연구에서는 알코올을 대표하는 1-프로판올을 사용하여 1-프로판올/벤젠 계에 대하여 재순환 평형장치를 이용하여 평형 온도/압력 효과에 따른 상평형 연구를 수행하였다. 측정된 기-액 평형 데이터는 UNIQUAC 식과 WILSON 식을 이용하여 상관관계 시키고 Gibbs/Duhem식을 이용하여 열역학적 건전성을 확인하였다. 상평형 실험 결과 RMSE (Root Mean Square Error)와 AAD (Average Absolute Deviation)는 두 모델식에서 0.05 이하의 값을 보여 실험값과 계산 값이 잘 일치함을 알 수 있었다. 또한 Gibbs/Duhem식을 이용하여 열역학적 건전성을 판별한 결과 잔류항 값이 ±0.2 이내에 분포하는 것을 통해 데이터에 대한 건전성을 확인할 수 있었다.
Benzene is one of the most widely used basic materials in the petrochemical industry. Generally, benzene exists as a mixture with alcohols rather than as a pure substance. Further, the alcohols-added mixtures usually exhibit an azeotropic composition. In this context, knowledge of the phase equilibrium behavior of the mixture is essential for its separation and purification. In this study, the vapor-liquid equilibrium data were measured in favor of a recirculating VLE apparatus under constant pressure for the 1 - propanol / benzene system. The measured vapor - liquid equilibrium data were also correlated by using the UNIQUAC and WILSON models and the thermodynamic consistency test based on the Gibbs/Duhem equation was followed. The results of the phase equilibrium experiment revealed RMSEs (Root Mean Square Error) and AADs (Average Absolute Deviation) of less than 0.05 for both models, indicating a good agreement between the experimental value and the calculated value. The results of the thermodynamic consistency test also confirmed through the residual term within ± 0.2.
  1. Lide DR, ed., CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press(2005).
  2. Arnold D, Plank C, Erickson E, Pike F, Ind. Eng. Chem. Chemical Engineering Data Series., 3(2), 253 (1958)
  3. Smiljanic JD, Kijevcanin ML, Djordjevic BD, Grozdanic DK, Serbanovic SP, J. Chem. Eng. Data, 53(8), 1965 (2008)
  4. Kijevcanin ML, Puric IM, Radovic IR, Djordjevic BD, Serbanovic SP, J. Chem. Eng. Data, 52(5), 2067 (2007)
  5. Tanaka R, Toyama S, J. Chem. Eng. Data, 42(5), 871 (1997)
  6. Coker A, Kayode, Ludwig, Ernest E., Ludwig’s Applied Process Design for Chemical And Petrochemical Plants. 1. Elsevier. p. 114(2007).
  7. Grayson M, Kirk.Othmer Encyclopedia of Chemical Technology, 3rd ed., Wiley, New York(1978).
  8. Kim HD, Hwang IC, Park SJ, Fluid Phase Equilib., 274(1-2), 73 (2008)
  9. Ovejero G, Romero MD, Diez E, Lopez T, Diaz I, J. Chem. Thermodyn., 40(11), 1617 (2008)
  10. Abrams DS, Prausnitz JM, AIChE J., 21, 116 (1975)
  11. Wilson GM, Deal CH, Ind. Chem. Fundam., 1, 20 (1962)
  12. Redlich O, Kister AT, Ind. Eng. Chem., 40, 345 (1948)
  13. Park SJ, Doh MS, HWAHAK KONGHAK, 35(1), 446 (1997)
  14. Artal M, Embid JM, Otin S, Velasco I, Fluid Phase Equilib., 154(2), 223 (1999)
  15. Gnanakumari P, Venkatesu P, Hsieh CT, Rao MVP, Lee MJ, Lin HM, J. Chem. Thermodyn., 41(2), 184 (2009)
  16. Smith JM, Van Ness HC, Abbott MM, 7th ed., McGraw-Hill, INC(2005).
  17. Prausnitz JM, Lichtenthaler RN, Azevedo EG, 2th ed., Prentice Hall(1986).
  18. Ramsauer B, Neueder R, Kunz W, Fluid Phase Equilib., 272(1-2), 84 (2008)
  19. Dean JA, LANGE'S Handbook of CHEMISTRY, 5th ed., McGRAW . HILL, INC(1997).
  20. Reid RC, Prausnitz JM, Poling BE, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York(1987).
  21. Ashour I, Abu-Eishah SI, J. Chem. Eng. Data, 54(5), 1717 (2006)
  22. Park SJ, Han KJ, Choi YY, J. Korean Ind. Eng. Chem., 15(7), 791 (2004)
  23. Darwish NA, Alkhateib AA, Fluid Phase Equilib., 132(1-2), 215 (1997)
  24. Jang HG, Kang CH, Appl. Chem. Eng., 21(3), 295 (2010)
  25. Brandrup J, Immergut EH, Grulke EA, “Polymer Hand-Book,” 4th ed., III/59~61, Wiley Interscience(1998).
  26. Kang DY, Jang HG, Han CN, Rho SG, Cho DL, Kang CH, Korean Chem. Eng. Res., 47(6), 755 (2009)