Applied Chemistry for Engineering, Vol.29, No.2, 162-167, April, 2018
은 나노입자의 크기 및 형태가 자가조립 망상구조를 갖는 투명전도성 필름의 광학 및 전기 특성에 미치는 영향
Effects of the Particle Size and Shape of Silver Nanoparticles on Optical and Electrical Characteristics of the Transparent Conductive Film with a Self-assembled Network Structure
E-mail:
초록
투명전도성필름(transparent conductive film, TCF) 제조를 위해 사용되는 은 나노입자의 평균입자 크기 및 형태가 폴리 에틸렌 테리프탈레이트(polyethylene terephthalate, PET) 필름 위에 코팅된 은 전도성 라인의 광학 및 전기특성에 미치는 영향을 연구하였다. Ag-CM, Ag-ME 및 Ag-EE 방식으로 제조한 은 나노입자가 Ag-EB, Ag-CR 및 Ag-PL 방식으로 제조한 은 나노입자보다 투명도는 차이가 없으나 전도도에서 우수한 특성을 보였다. 이는 입자의 크기가 앞에 언급한세 가지 경우 평균 입도가 약 80 nm 이하이고 입도의 균일도가 양호한 반면, 뒤에 언급한 세 가지 경우 평균입도가 100 nm 이상이며 입자의 뭉침 현상이 심하게 나타난 결과와 관련이 있음을 확인하였다. 이 결과는 PET 필름 위에 코팅을 하고 건조시켜 제조한 패턴을 각각의 시료별로 SEM으로 정면과 측면에서 관찰하였을 때, 패턴의 형상 및 두께의 균일도 측면에서 나타난 결과와 동일하였다. 따라서 은 나노입자의 평균입자 크기가 작고 입자의 균일성이 유지 될수록 보다 우수한 전기 특성을 나타냄을 확인하였다.
The effect of the average particle size and shape of silver nanoparticles for the transparent conductive film (TCF) was studied. Optical and electrical properties of silver conductive lines coated on the polyethylene terephthalate (PET) film was also measured. Silver nanoparticles produced by Ag-CM, Ag-ME, Ag-EE methods showed an excellent conductivity compared to those produced by Ag-EB, Ag-CR and Ag-PL methods, but a little difference in the transparency. In the case of the former three silver nanoparticles, the average particle size was about 80 nm or less and the size was uniform. For the latter case, the severe agglomeration phenomena of particles was observed and the average particle size was 100 nm or more. This result was consistent with the result of the uniformity of the pattern shape and thickness on conductive line patterns observed by SEM. Therefore, it was confirmed that the electrical characteristics could be obtained when the average particle size of silver nanoparticles is smaller and the uniformity of the particles is maintained.
Keywords:optical and electrical characteristics;self-assembly;silver nanoparticle;transparent conductive film
- Yeo SY, Lee HJ, Jeong SH, J. Mater. Sci., 38(10), 2143 (2003)
- Zhang JP, Chen P, Sun CH, Hu XJ, Appl. Catal. A: Gen., 266(1), 49 (2004)
- Zhang WZ, Qiao XL, Chen JG, Wang HS, J. Colloid Interface Sci., 302(1), 370 (2006)
- Giri N, Natarajan RK, Gunasekaran S, Shreemathi S, Arch. Appl. Sci. Res., 3(5), 624 (2011)
- Ghorbani HR, Safekordi AA, Attar H, Sorkhabadi SM, Chem. Biochem. Eng. Q., 25(3), 317 (2011)
- Nasretdinova GR, Fazleeva RR, Mukhitova RK, Nizameev IR, Kadirov MK, Ziganshina AY, Yanilkin VV, Electrochem. Commun., 50, 69 (2015)
- Moradi Z, Akhbaria K, Phuruangrat A, Costantino F, J. Mol. Struct., 1133, 172 (2017)
- Sumithra M, Aparna Y, Rao PR, Reddy KS, Reddy PR, Mater. Today, 3(6), 2278 (2016)
- He C, Liu L, Fang Z, Li J, Guo J, Wei J, Ultrason. Sonochem., 21(2), 542 (2014)
- El-Nour KMMA, Eftaiha A, Al-Warthan A, Ammar RAA, Arab. J. Chem., 3(3), 135 (2010)
- Khodashenas B, Ghorbani HR, Arab. J. Chem., 8(1), 16 (2015)
- Sim SB, Bae DS, Han JD, Appl. Chem. Eng., 27(1), 68 (2016)
- Lee JJ, Ind. Coop. Soc., 17(5), 10 (2016)
- Oliveira MM, Ugarte D, Zanchet D, Zarbin AJG, J. Colloid Interface Sci., 292(2), 429 (2005)
- Hou XM, Zhang XL, Chen ST, Fang Y, Yan JL, Li N, Qi PX, Appl. Surf. Sci., 257(11), 4935 (2011)
- Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Avalos-Borja M, Castillon-Barraza FF, Posada-Amarillas A, Mater. Res. Bull., 43(1), 90 (2008)
- Wang H, Qiao X, Chen J, Ding S, Colloids Surf. A: Physicochem. Eng. Asp., 256, 111 (2005)
- Van Hyning DL, Klemperer WG, Zukoski CF, Langmuir, 17(11), 3128 (2001)
- Zhang W, Quao X, Chen J, Chen Q, Mater. Lett., 62, 1689 (2008)
- Mansouri SS, Ghader S, Arab. J. Chem., 2, 47 (2009)
- Qi H, Alexson DA, Glembocki OJ, Prokes SM, Proc. SPIE Int. Soc. Opt. Eng., 7947, Y1 (2011)