화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.61, 181-187, May, 2018
Hierarchical porous flower-like nickel cobaltite nanosheets as a binder-less electrode for supercapacitor application with ultra-high capacitance
E-mail:
Herein, we present a large-scale growth of porous hierarchical structure of three-dimensional (3D) flower-shaped nickel cobaltite (PFNC) nanosheets on Ni foam current collector with hardy adhesion as high-performance electrode for supercapacitors via facile hydrothermal method and then post annealing treatment. The availability of porous architecture increases the electroactive cites and facilitates speedy ion and electron conduction during electrochemical reactions. The prepared material shows an excellent specific capacitance of 2100 F g 1 (4.24 F cm 2) at 5 mV s 1 scan rate by cyclic voltammetry analysis. Overall results divulge that the binder-less PFNC electrode will be a promising electrode material for supercapacitors.
  1. Simon P, Gogotsi Y, Nat. Mater., 7(11), 845 (2008)
  2. Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS, Int. J. Hydrog. Energy, 34(11), 4889 (2009)
  3. Wang G, Zhang L, Zhang J, Chem. Soc. Rev., 41, 797 (2012)
  4. Chen PC, Shen G, Shi Y, Chen H, Zhou C, ACS Nano, 4, 4403 (2010)
  5. Zhao Y, Hu L, Zhao S, Wu L, Adv. Funct. Mater., 26, 4085 (2015)
  6. Liu C, Li F, Ma LP, Cheng HM, Adv. Mater., 22(8), E28 (2010)
  7. Li W, Xu K, An L, Jiang F, Zhou X, Yang J, Chen Z, Zou R, Hu J, J. Mater. Chem. A, 2, 1443 (2014)
  8. Cheng FY, Wang HB, Zhu ZQ, Wang Y, Zhang TR, Tao ZL, Chen J, Energy Environ. Sci., 4, 3668 (2011)
  9. Li LL, Peng SJ, Cheah YL, Wang J, Teh PF, Ko YW, Wong CL, Srinivasan M, Nanoscale, 5, 134 (2013)
  10. Courtel FM, Duncan H, Abu-Lebdeh Y, Davidson IJ, J. Mater. Chem., 21, 10206 (2011)
  11. Wang G, Zhang L, Zhang J, Chem. Soc. Rev., 41, 797 (2012)
  12. Makino S, Yamauchi Y, Sugimoto W, J. Power Sources, 227, 153 (2013)
  13. Toupin M, Brousse T, Belanger D, Chem. Mater., 16, 3184 (2004)
  14. Ji J, Zhang LL, Ji H, Li Y, Zhao X, Bai X, Fan X, Zhang F, Ruoff RS, ACS Nano, 7, 6237 (2013)
  15. Liu JP, Jiang J, Cheng CW, Li HX, Zhang JX, Gong H, Fan HJ, Adv. Mater., 23(18), 2076 (2011)
  16. Zhang Y, Li L, Su H, Huang W, Dong X, J. Mater. Chem. A, 3, 43 (2015)
  17. Veerasubramani GK, Krishnamoorthy K, Radhakrishnan S, Kim NJ, Kim SJ, Int. J. Hydrog. Energy, 39(10), 5186 (2014)
  18. Ko TH, Radhakrishnan S, Seo MK, Khil MS, Kim HY, Kim BS, J. Alloy. Compd., 696, 193 (2017)
  19. Zhu YR, Wang JF, Wu ZB, Jing MJ, Hou HS, Jia XN, Ji XB, J. Power Sources, 287, 307 (2015)
  20. Zhang G, Wu H, Hoster HE, Chan-Park MB, Lou X, Energy Environ. Sci., 5, 9453 (2012)
  21. Kim T, Ramadoss A, Saravanakumar B, Veerasubramani GK, Kim SJ, Appl. Surf. Sci., 370, 452 (2016)
  22. Ramadoss A, Kang KN, Ahn HJ, Kim SI, Ryu ST, Jang JH, J. Mater. Chem. A, 4, 4718 (2016)
  23. Ataherian F, Wang Y, Tablet-Aoul A, Mohamedi M, ChemElectroChem, 4, 1924 (2017)
  24. Liu Y, li G, Guo Y, Ying Y, Peng X, ACS Appl. Mater Interfaces, 9(16), 14043 (2017)
  25. Nagaraju G, Kakarla R, Cha SM, Yu JS, Nano Res., 8, 3749 (2015)
  26. Hu JS, Zhong LS, Song WG, Wan L, J. Adv. Mater., 20, 2977 (2008)
  27. Liu WM, Gao TT, Yang Y, Sun Q, Fu ZW, Phys. Chem. Chem. Phys., 15, 15806 (2013)
  28. Krishnamoorthy K, Kim SJ, J. Ind. Eng. Chem., 32, 39 (2015)
  29. Cui B, Lin H, Li JB, Li X, Yang J, Tao J, Adv. Funct. Mater., 18(9), 1440 (2008)
  30. Wei TY, Chen CH, Chien HC, Lu SY, Hu CC, Adv. Mater., 22(3), 347 (2010)
  31. Kim JG, Pugmire DL, Battaglia D, Langell MA, Appl. Surf. Sci., 165(1), 70 (2000)
  32. Marco J, Gancedo J, Gracia M, Gautier J, Rıos E, Berry F, J. Solid State Chem., 153, 74 (2000)
  33. Choudhury T, Saied S, Sullivan J, Abbot AM, J. Phys. D-Appl. Phys., 22, 1185 (1989)
  34. Zhong JH, Wang AL, Li GR, Wang JW, Ou YN, Tong YX, J. Mater. Chem., 22, 5656 (2012)
  35. Yuan CZ, Li JY, Hou LR, Zhang XG, Shen LF, Lou XW, Adv. Funct. Mater., 22(21), 4592 (2012)
  36. Wang T, Guo Y, Zhao B, Yu S, Yang HP, Lu D, Fu XZ, Sun R, Wong CP, J. Power Sources, 286, 371 (2015)
  37. Lei Y, Li J, Wang Y, Gu L, Chang Y, Yuan H, Xiao D, ACS Appl. Mater Interfaces, 6, 1773 (2014)
  38. Wang Q, Liu B, Wang X, Ran S, Wang L, Chen D, Shen G, J. Mater. Chem., 22, 21647 (2012)
  39. Xu K, Yang J, Li S, Liu Q, Hu J, Mater Lett., 187, 129 (2017)
  40. Yan T, Li RY, Li ZJ, Fang YJ, Electrochim. Acta, 134, 384 (2014)
  41. An C, Wangn Y, Huang Y, Xu Y, Jiao L, Yuan H, Nano Energy, 10, 125 (2014)
  42. Yu L, Wu H, Wu T, Yuan C, RSC Adv., 3, 23709 (2013)
  43. Xu J, Liu F, Peng X, Li J, Yang Y, Jin D, Jin H, Wang X, Hong B, ChemistrySelect, 2, 5189 (2017)
  44. Veerasubramani GK, Sudhakaran MSP, Alluri NR, Krishnamoorthy K, Mok YS, Kim SJ, J. Mater. Chem. A, 4, 12571 (2016)
  45. Nagaraju G, Sekhar SC, Bharat LK, Yu JS, ACS Nano, 11, 10860 (2017)
  46. Veerasubramani GK, Krishnamoorthy K, Radhakrishnan S, Kim NJ, Kim SJ, J. Ind. Eng. Chem., 36, 163 (2016)
  47. Yu L, Wu H, Wu T, Yuan C, RSC Adv., 3, 23709 (2013)