화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.61, 197-205, May, 2018
A novel cocatalyst of NiCoP significantly enhances visible-light photocatalytic hydrogen evolution over cadmium sulfide
E-mail:
The technology of photocatalytic hydrogen evolution (PHE) by water splitting is a clean and sustainable approach to solve energy crisis and environmental problem. Many efforts have been made to develop new materials for this technology. In the photocatalytic water splitting, the cocatalyst is pivotal in improving the photocatalytic ability of the main catalyst by transferring electrons and providing active sites of H+ reduction. Here we report a new bimetal phosophide cocatalyst of NiCoP. The NiCoP can significantly improve the ability and durability of PHE for water splitting. The PHE rate is maximized to 28412.6 mmol/g/h over a 8 wt.% NiCoP/CdS photocatalyst, which is 361 times of the 1 wt.0/00 Pt/CdS (78.7 μmol/g/h) under the same water splitting condition. The apparent quantum yield in 100 h is about 36.8%. The long-time photolysis water reaction for 100 h with increasing photocatalytic activity exhibits that the NiCoP in CdS is highly stable in water spitting. We can control and improve the photocatalytic activity by regulating the Ni.Co ratio, which is an advantage relative to single-metal phosphides. The photo-induced charge transfer over NiCoP has been proved by photoluminescence and methyl viologen dication. It is indicated the non-noble-metal cocatalyst NiCoP can substitute noble metal to significantly enhance the PHE activity of photocatalysts.
  1. Borgarello E, Kiwi J, Pelizzetti E, Visca M, Gratzel M, J. Am. Chem. Soc., 103, 6324 (1981)
  2. Gratzel M, Accounts Chem. Res., 14, 376 (1981)
  3. (a)Maeda K, Domen K, J. Phys. Chem. Lett., 1, 2655 (2010); (b)Kalyanasundaram K, Gratzel M, Pelizzetti E, Coord. Chem. Rev. 69, 57 (1986).
  4. (a)Chen XB, Shen SH, Guo LJ, Samuel SM, Chem. Rev., 110, 6503 (2010);(b)Kudo A, Miseki Y, Chem. Soc. Rev., 38, 253 (2009); (c)Prashant V, Kamat, Bisquert J, J. Phys. Chem., 117, 14873 (2013).
  5. (a)Silva LA, Ryu SY, Choi J, J. Phys. Chem., 112, 12069 (2008); (b)Li Q, Guo B, Yu J, J. Am. Chem. Soc., 133, 10878 (2011); (c)Xu Y, Zhao WW, Xu R, Shi YM, Zhang B, Chem. Commun., 49, 9803 (2013).
  6. (a)Wang XW, Yin LC, Liu G, Wang LZ, Saito R, Lu GQ, Cheng HM, Energy Environ. Sci., 4, 3976 (2011); (b)Schweinberger FF, Berr MJ, Doblinger M, Wolff C, Sanwald KE, Crampton AS, Ridge CJ, Jackel F, Feldmann J, Tschurl M, Heiz U, J. Am. Chem. Soc., 135, 13262 (2013).
  7. (a)Wang Z, Hou JG, Yang C, Jiao SQ, Zhu HM, Chem. Commun., 50, 1731 (2014); (b)Ye AH, Fan WQ, Zhang QH, Deng WP, Wang Y, Catal. Sci. Technol., 2, 969 (2012); (c)Wang X, Liu G, Wang L, Adv. Energy Mater., 2, 42 (2012).
  8. (a)Li YX, Tang LF, Peng SQ, Li ZC, Lu GX, CrystEngComm, 14, 6974 (2012); (b)Yu ZB, Xie YP, Liu G, Lu GQ, Ma XL, Cheng HM, J. Mater. Chem., 1, 2773 (2013).
  9. (a)Hu ZF, Yu JC, J. Mater. Chem., 1, 12221 (2013); (b)Yu GY, Wang X, Cao JG, Wu SJ, Yan WF, Liu G, Chem. Commun., 52, 2394 (2016).
  10. (a)Gao P, Liu JC, Lee S, Zhang T, Sun DD, J. Mater. Chem., 22, 2292 (2012); (b)Zhang L, Minegishi T, Nakabayashi M, Suzuki Y, Seki K, Shibata N, Kubota J, Domen K, Chem. Sci., 6, 894 (2015); (c)Su R, Tiruvalam R, Logsdail AJ, et al., Am. Chem. Soc., 8, 3490 (2014).
  11. Zou XX, Zhang Y, Chem. Soc. Rev., 44, 5148 (2015)
  12. (a)Shi YM, Zhang B, Chem. Soc. Rev., 45, 1781 (2016); (b)Cao S, Chen Y, Wang CJ, Lv XJ, Fu WF, Chem. Commun., 51, 8708 (2015).
  13. (a)Sun ZJ, Zheng HF, Li JS, Du PW, Energy Environ. Sci., 8, 2668 (2015); (b)Cao S, Chen Y, Wang CJ, He P, Fu WF, Chem. Commun., 50, 10427 (2014).
  14. Cao S, Chen Y, Hou CC, Lv XJ, Fu WF, J. Mater. Chem., 3, 6096 (2015)
  15. Sun ZJ, Chen HL, Huang Q, Du PW, Catal. Sci. Technol., 5, 4964 (2015)
  16. Sun ZJ, Yue QD, Li JS, Xu J, Zheng HF, Du PW, J. Mater. Chem., 3, 10243 (2015)
  17. Yue QD, Wan YY, Sun ZJ, Wu XJ, Yuan YP, Du PW, J. Mater. Chem., 3, 16941 (2015)
  18. Li JY, Yan M, Zhou XM, Huang ZQ, Xia ZM, Chang CR, Ma YY, Qu YQ, Adv. Funct. Mater., 26(37), 6785 (2016)
  19. Anantharaj S, Ede SR, Sakthikumar K, Karthick K, Mishra S, ACS Catal., 6, 8069 (2016)
  20. (a)Song LM, Zhang SJ, Wei QW, Powder Technol., 212, 367 (2011); (b)Song LM, Zhang SJ, Wei QW, Vacuum, 112, 12 (2015).
  21. Burns AW, Gaudette AF, Bussell ME, J. Catal., 260(2), 262 (2008)