Applied Surface Science, Vol.435, 1020-1028, 2018
Facile synthesis high nitrogen-doped porous carbon nanosheet from pomelo peel and as catalyst support for nitrobenzene hydrogenation
Nitrogen-doping porous carbon-based nanosheets were fabricated from pemole peel and melamine through hydrothermal route and carbonization. The pomelo peel with sponge-like natural structure was employed as carbon source, and melamine was used both as nitrogen precursors and as nanosheet structure directing. The morphology and chemical composition of the obtained porous carbon nanosheet carbon materials were characterized by scanning electron microscopy, thermogravimetric analyzer, Fourier transform infrared spectra, transmission electron microscopy, BET surface area measurement, X-ray photoelectron spectroscopy and X-ray powder diffraction. The result indicated that the nanosheet thickness, nitrogen-doped amount and surface area were determined by the ratio of pomelo peel to melamine and carbonization temperature. The catalytic nitrobenzene hydrogenation was evaluated after Pd was loaded on nitrogen-doping porous carbon-based nanosheet. The results showed Pd@PCN had almost 100% conversion and good cycling performance towards the hydrogenation of nitrobenzene due to the developed pore structure, high nitrogen-doping and well dispersed less Pd particle; it was superior to other nanomaterial supports and demonstrated great potential application. (c) 2017 Elsevier B.V. All rights reserved.
Keywords:Pomelo peel;Melamine;Pd@porous carbon nanosheet;Hydrogenation of nitrobenzene;Catalytic activity