Automatica, Vol.89, 333-339, 2018
Robust self-triggered min-max model predictive control for discrete-time nonlinear systems
In this paper, we propose a robust self-triggered model predictive control (MPC) algorithm for constrained discrete-time nonlinear systems subject to parametric uncertainties and disturbances. To fulfill robust constraint satisfaction, we take advantage of the min-max MPC framework to consider the worst case of all possible uncertainty realizations. In this framework, a novel cost function is designed based on which a self-triggered strategy is introduced via optimization. The conditions on ensuring algorithm feasibility and closed-loop stability are developed. In particular, we show that the closed-loop system is input-to state practical stable (ISpS) in the attraction region at triggering time instants. In addition, we show that the main feasibility and stability conditions reduce to a linear matrix inequality for linear case. Finally, numerical simulations and comparison studies are performed to verify the proposed control strategy. (C) 2018 Elsevier Ltd. All rights reserved.