Biochemical and Biophysical Research Communications, Vol.497, No.2, 667-674, 2018
MiR-29 family members interact with SPARC to regulate glucose metabolism
MicroRNA (miR)-29 family members have been reported to play important regulatory roles in metabolic disease. We used TargetScan to show that "secreted protein acidic rich in cysteine" (SPARC) is a target of the miR-29s. SPARC is a multifunctional secretory protein involved in a variety of biological activities, and SPARC dysregulation is associated with a wide range of obesity-related disorders, including type 2 diabetes mellitus (T2DM). We explored whether miR-29s played roles in glucose metabolism and whether miR-29s directly targeted SPARC. We also examined the effect of SPARC on glucose metabolism and how the association of miR-29s with SPARC affected glucose metabolism. We found that overexpression of miR-29s reduced glucose uptake and GLUT4 levels; that miR-29 directly targeted SPARC, resulting in degradation of SPARC-encoding mRNA and reduction in the SPARC protein level; that SPARC increased glucose uptake and GLUT4 levels; that shRNA-mediated knockdown of SPARC reduced GLUT4 protein levels in 3T3-L1 adipocytes; that miR-29s reduced glucose uptake and GLUT4 levels; and that miR-29s inhibited glucose uptake by suppressing SPARC synthesis. Thus, the miR-29 family negatively regulates glucose metabolism by inhibiting SPARC expression. (C) 2018 Elsevier Inc. All rights reserved.
Keywords:MiR-29 family members;Secreted protein acidic rich in cysteine;GLUT4;Glucose uptake;Glucose metabolism