화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.496, No.1, 120-126, 2018
MiR-449 overexpression inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via suppressing Sirt1/Fra-1 pathway in high glucose and free fatty acids microenvironment
Diabetic osteoporosis is a chronic complication caused by diabetes mellitus, and However, the exact mechanism of diabetes mellitus-induced osteoporosis is still unknown. In this study, we investigate the effect of miR-449 on osteogenic differentiation and its underlying mechanism in human bone marrow derived mesenchymal stem cells (hBMSCs) with high glucose (HG) and free fatty acids (FFA) treatment. Results showed that after culturing for 14 days, high glucose (HG) and free fatty acids (FFA) treatment dramatically decreased mineralization of human bone marrow-derived mesenchymal stem cells (hBMSCs) compared with cells treated with osteogenic medium (OM) alone. We also found that miR-449 expression was up-regulated during osteogenic differentiation of hBMSCs with HG and FFA treatment. Moreover, during osteogenic differentiation of hBMSCs with HG and FFA treatment, miR-449 mimics notably decreased the alkaline phosphatase (ALP) activity and the mRNA and protein expression levels of runt-related transcription factor 2 (Runx2), ALP, collagen I, osteocalcin (OCN), and bone sialoprotein (BSP), which was remarkably increased by miR-449 inhibitors. Furthermore, miR-449 directly targets Sirt1 by binding to its 3'-UTR. Sirt1 overexpression reverses the suppressive effect of miR-449 mimics on Fra-1 mRNA and protein expression, which was also alleviated by Fra-1 overexpression. In addition, Fra-1 overexpression alleviates the inhibitory effect of miR-449 mimics on the ALP activity and the mRNA and protein of Runx2, collagen I, OCN and BSP. Taken together, our results indicated that miR-449 over expression inhibited osteogenic differentiation of HG-FFA-treated hBMSCs through the Sirt1/Fra-1 signal pathway. It is conceivable that modulating miR-449 might provide a new therapy for intervention in diabetic osteoporosis. (C) 2018 Published by Elsevier Inc.