화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.495, No.3, 2165-2170, 2018
Involvement of nitric oxide/reactive oxygen species signaling via 8-nitro-cGMP formation in 1-methyl-4-phenylpyridinium ion -induced neurotoxicity in PC12 cells and rat cerebellar granule neurons
To investigate the role of nitric oxide (NO)/reactive oxygen species (ROS) redox signaling in Parkinson's disease-like neurotoxicity, we used 1-methyl-4-phenylpyridinium (MPP+) treatment (a model of Parkinson's disease). We show that MPP+-induced neurotoxicity was dependent on ROS from neuronal NO synthase (nNOS) in nNOS-expressing PC12 cells (NPC12 cells) and rat cerebellar granule neurons (CGNs). Following MPP+ treatment, we found production of 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), a second messenger in the NO/ROS redox signaling pathway, in NPC12 cells and rat CGNs, that subsequently induced S-guanylation and activation of H-Ras. Additionally, following MPP+ treatment, extracellular signal-related kinase (ERK) phosphorylation was enhanced. Treatment with a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor attenuated MPP+-induced ERK phosphorylation and neurotoxicity. In conclusion, we demonstrate for the first time that NO/ROS redox signaling via 8-nitro-cGMP is involved in MPP+-induced neurotoxicity and that 8-nitro-cGMP activates H-Ras/ERK signaling. Our results indicate a novel mechanism underlying MPP+-induced neurotoxicity, and therefore contribute novel insights to the mechanisms underlying Parkinson's disease. (C) 2017 Elsevier Inc. All rights reserved.