화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.495, No.2, 1668-1674, 2018
The down-regulation of cardiac contractile proteins underlies myocardial depression during sepsis and is mitigated by carbon monoxide
The aim of this study is to investigate the mechanism underling cardiac dysfunction during sepsis, as well as the possible amelioration of this dysfunction by exogenous carbon monoxide (CO) administration. For this purpose, rats (six-week-old, male, Sprague-Dawley) were administered LPS (15 mg/kg body weight, i.p. 6 h) and/or CORM (30 mg/kg, i.p.). The decreased left ventricular ejection fraction (EF) observed in LPS group rats was recovered in the LSP + CORM group, confirming the protective role of CO against sepsis-induced myocardial depression. Proteomic as well as immunoblot analysis showed that the levels of myosin heavy and light chains (MHC and MLC) as well as alpha-cardiac actin (ACTC) were decreased in the LPS group, and these decreases were mitigated in the LSP + CORM group, suggesting that the amounts of major contractile proteins are decreased in depressed myocardium. Not only LPS-induced inflammatory cytokine (TNF alpha and IL-1 beta production but also the decrease in myofilament proteins was mitigated by CORM. These results confirm the protective action of exogenously administered CO against myocardial depression during sepsis, and reveal a novel mechanism underling cardiac dysfunction during sepsis. (C) 2017 Elsevier Inc. All rights reserved.