Biochemical and Biophysical Research Communications, Vol.495, No.1, 280-285, 2018
Chloroplast protein PLGG1 is involved in abscisic acid-regulated lateral root development and stomatal movement in Arabidopsis
The plant hormone abscisic acid (ABA) plays a crucial role in root architecture; however, the molecular mechanism of ABA-regulated lateral root (LR) growth is not well known. We screened an Arabidopsis thaliana mutant with LR growth that was sensitive to ABA from a T-DNA insertion mutant library, which was an allelic mutant of plgg1-1, termed plgg1-2. PLGG1 encodes a chloroplast protein that transports plastidic glycolate and glycerate. The length and number of LRs at the root-hypocotyl junction of plgg1-1 and plgg1-2 were significantly impaired under exogenous ABA treatment, and the transgenic plant complementary lines of plgg1-2 restored LR growth in response to ABA. In addition, we found that PLGG1 is involved in other major ABA responses, including ABA-inhibited seed germination, ABA-mediated stomatal movement, and drought tolerance. These findings open new perspectives on elucidating the mechanism of ABA response, and provide clues for analysing the functions of chloroplast proteins in regulating root growth. (C) 2017 Elsevier Inc. All rights reserved.