Bioresource Technology, Vol.249, 858-868, 2018
Targeted poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic production from carbon dioxide
A microbial production process was developed to convert CO2 and valeric acid into tailored poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) bioplastics. The aim was to understand microbial PHBV production in mixotrophic conditions and to control the monomer distribution in the polymer. Continuous sparging of CO2 with pulse and pH-stat feeding of valeric acid were evaluated to produce PHBV copolyesters with predefined properties. The desired random monomer distribution was obtained by limiting the valeric acid concentration (below 1 g L-1). H-1-NMR, C-13-NMR and chromatographic analysis of the PHBV copolymer confirmed both the monomer distribution and the 3-hydroxyvalerate (3HV) fraction in the produced PHBV. A physical-based model was developed for mixotrophic PHBV production, which was calibrated and validated with independent experimental datasets. To produce PHBV with a predefined 3HV fraction, an operating diagram was constructed. This tool was able to predict the 3HV fraction with a very good accuracy (2% deviation).
Keywords:Gas fermentation;Poly(3-hydroxybutyrate-co-3-hydroxyvalerate);Carbon capture and utilization;Modelling