화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.115, No.6, 1624-1629, 2018
Sequential processing with fermentative Caldicellulosiruptor kronotskyensis and chemolithoautotrophic Cupriavidus necator for converting rice straw and CO2 to polyhydroxybutyrate
Unpretreated rice straw was fermented by the extremely thermophilic bacterium Caldicellulosiruptor kronotskyensis, generating solubilized carbohydrates, organic acids, lignin-derived aromatics, H-2, and CO2, which were subsequently used to produce polyhydroxybutyrate (PHB) by the chemolithoautotrophic bacterium Cupriavidus necator. The fermented liquid significantly enhanced the growth of C. necator, leading to a five-fold cell biomass yield, and a nine-fold PHB yield compared to what was obtained from conventional mineral media. This integrated process utilized all products of lignocellulose fermentation without H (electron) loss and carbon emission, while concomitantly enhancing CO2 fixation by C. necator for PHB production. The sequential coupling of C. kronotskyensis and C. necator provides not only a new biorefinery paradigm characterized by reduced pretreatment and saccharification requirements but also an efficient way for enhancing CO2 fixation.