Chemical Engineering and Processing, Vol.125, 173-182, 2018
Comparison of a monolith and a confined Taylor flow (CTF) reactor for propene epoxidation
Heterogeneous catalytic epoxidation of propene to propene oxide with hydrogen peroxide was investigated in a monolith and a confined Taylor flow (CTF) reactor in which titanium silicalite (TS-1) catalyst was coated on the walls. The influence of gas and liquid superficial velocity on the hydrodynamic characteristics of the monolith and CTF reactor was also investigated under Taylor flow regime at atmospheric and high pressure. The reactors showed distinctly different hydrodynamic properties which in turn led to different performance for propene epoxidation. The production rate of propene oxide was higher in the monolith reactor due to its larger catalyst coating area, larger mass -transfer surface area and more frequent recycling of liquid flow. A variation of reactor column structures confirmed that the propene oxide production was highly dependent on the catalyst coating area and cross-sectional area of the reactor column. High operating pressure made a significant impact on the length of Taylor bubbles and the propene oxide production rate was found to increase in proportion to the operating pressure.
Keywords:Propene oxide;Hydrogen peroxide;Titanium silicalite (TS-1);Epoxidation;Confined Taylor flow (CIF) reactor;Monolith reactor