Chemical Engineering Journal, Vol.336, 701-709, 2018
Encapsulating nanoparticulate Sb/MoOx into porous carbon nanofibers via electrospinning for efficient lithium storage
Full encapsulation of Sb/MoOx nanoparticles into porous N-doped carbon nanofibers (CNFs) (denoted as Sb/MoOx@ CNFs) is realized via electrospinning and subsequent annealing and water-washing treatments. The in situ generated NaCl nanoparticles, arising from the reaction between the SbCl3 and Na2MoO4 precursors, sever as water-removable pore templates, which generate numerous pores within the CNFs after washing with water. When used as anode materials for lithium ion batteries (LIBs), the porous Sb/MoOx@CNFs deliver a high reversible capacity of similar to 822 mA h/g at 200 mA/g after 140 cycles, and a stable capacity of similar to 558 mA h/g even after 500 cycles at a high rate of 1 A/g. The excellent lithium storage performance is attributed to the novel structure characteristics of the hybrid Sb/MoOx@ CNFs. The full encapsulation of Sb/MoOx nanoparticles as well as pores into CNFs efficiently buffers the volume changes and facilitates the maintenance of electrode integrity, while the N-doped one-dimensional CNFs not only improve the electronic conductivity but also facilitate the electronic and ionic transportation. Moreover, ex situ TEM measurements clearly support the advantages of such hybrid electrode in LIBs.
Keywords:Electrospinning;NaCl templating;Porous N-doped carbon nanofibers;Sb/MoOx encapsulation;Lithium storage properties