화학공학소재연구정보센터
Composite Interfaces, Vol.25, No.9, 839-853, 2018
Surface treatment of single sisal fibers with bacterial cellulose and its enhancement in fiber-polymer adhesion properties
In this work, a simple and effective method to modify the surface of single sisal fibers with G. xylinum was described. Single fiber tensile strength test, single fiber fragmentation test, thermal gravimetric analyses were conducted to assess the effects of different modification methods (unmodified, NaOH treatment and BC treatment). Fourier transform infrared spectroscopy, scanning electron microscopy and water uptake experiments were employed to characterize the resulting interfacial adhesion. It was shown that BC treatment produced better reinforced polymer composites with improved mechanical and long-term properties. The results also elucidated that BC nanofibrils formed a dense three dimensional network on single sisal fibers covering the roughened surface and filling the grooves and other surface defects' caused by NaOH modification in addition to its exposed hydroxyl groups to form hydrogen bonds with sisal fiber, all contributed to enhanced mechanical properties of sisal fibers as well as the better binding between sisal fibers and resin matrix. Moreover, this work also confirmed that internal geometrical and morphological differences exist in sisal fibers and this result is insightful for future natural fiber research about the importance of careful selection of fibers for consistent comparisons. [GRAPHICS] .