Electrophoresis, Vol.39, No.5-6, 816-823, 2018
CE-XRF-initial steps toward a non-invasive elemental sensitive detector for liquid separations
The toxicity, bioavailability, and mobilization of elements within the biosphere is dependent on its species. CE has emerged as a strong separation technique for elemental speciation. Conventionally, CE has been coupled with UV-vis, (CD)-D-4, PIXE (proton-induced X-ray emission), and ICP-MS. UV-vis and (CD)-D-4 are not elemental sensitive detection methods, PIXE requires the etching of the detection window resulting in a very brittle capillary, and ICP-MS is an expensive large footprint instrument. Here, we aim to develop an elemental specific detector, XRF (X-ray fluorescence spectrometry), for use with CE. A custom-built micro-XRF was tested and static LODs were determined for 19 elements (Ca-U) with both unmodified (20-926 ppm) and modified capillaries (20-291 ppm). A custom-built CE was combined with the micro-XRF and separation of Ca2+ and Co2+ was obtained. Sr2+ coeluted with Ca2+ in the mixture, but because of the elemental sensitivity of XRF, the Sr and Ca signals could be separated. After successful testing of the micro-XRF, the feasibility of using a low-cost X-ray source and detector was tested. Even lower LODs were obtained for Ga and Rb, showing the feasibility of a smaller, low-cost XRF unit as an elemental specific detector. However, the buffer selection that can be conveniently used with XRF is currently limited due to capillary corrosion, likely correlated to radiolysis.