화학공학소재연구정보센터
Heat Transfer Engineering, Vol.39, No.1, 15-26, 2018
Experimental Study of Heat Transfer Enhancement for Fluid Flow Inside Annulus with Spiral Wires
The evaluation of heat transfer and pressure drop in a water flow inside an annulus of a double concentric-tube heat exchanger with spiral wires inserts was carried out. Three spiral wires with a constant pitch and different wire diameter were tested for a Reynolds number from 1500 to 5500 and a Prandtl number from 5 to 8. The results obtained showed that the spiral wires increased the heat transfer and the pressure drop in comparison with a fluid flow inside a smooth annulus. From the heat transfer point of view, this increase was proportional to the wire diameter but the effect decreases when the Reynolds number increases. General empirical correlations based on dimensionless parameters to calculate the convective heat transfer coefficient and friction factor were developed with an uncertainty of +/- 6.1% and +/- 7.6%, respectively, when these estimates were compared against experimental data. The empirical correlations developed were also compared with the estimates calculated by empirical correlations proposed by other researchers, resulting in a good agreement with these values. After the validation analysis, it was demonstrated that the new equations developed provide a good and reliable tool for the design of double concentric-tube heat exchangers with spiral wires inserted inside annulus.