화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.63, No.3, 643-656, 2018
Stability Analysis of Monotone Systems via Max-Separable Lyapunov Functions
We analyze stability properties of monotone nonlinear systems via max-separable Lyapunov functions, motivated by the following observations: first, recent results have shown that asymptotic stability of a monotone nonlinear system implies the existence of a max-separable Lyapunov function on a compact set; second, for monotone linear systems, asymptotic stability implies the stronger properties of D-stability and insensitivity to time delays. This paper establishes that for monotone nonlinear systems, equivalence holds between asymptotic stability, the existence of a max-separable Lyapunov function, D-stability, and insensitivity to bounded and unbounded time-varying delays. In particular, a new and general notion of D-stability for monotone nonlinear systems is discussed, and a set of necessary and sufficient conditions for delay-independent stability are derived. Examples show how the results extend the state of the art.