Inorganic Chemistry, Vol.57, No.6, 3177-3182, 2018
Insertion of Ni(I) into Porphyrins at Room Temperature: Preparation of Ni(II)porphyrins, and Ni(II)chlorins and Observation of Hydroporphyrin Intermediates
Reduced Nickel porphyrins play an important role as enzymatic cofactors in the global carbon cycle (cofactor F430), and as powerful catalysts in solar-to-fuel-processes such as the hydrogen evolution reaction, and the reduction of CO and CO2. The preparation of Ni(II)porphyrins requires harsh conditions, and characterization of the reduced species is intricate. We present a very mild, convenient, and high yielding method of inserting Ni into electron rich, and electron deficient porphyrins which at the same time gives access to to Ni(II) phlorins and Ni(II)chlorins and Ni(II)porphyrins.