International Journal of Control, Vol.91, No.3, 534-553, 2018
Time-response shaping using output to input saturation transformation
For linear systems, the control law design is often performed so that the resulting closed loop meets specific frequency-domain requirements. However, in many cases, it may be observed that the obtained controller does not enforce time-domain requirements amongst which the objective of keeping a scalar output variable in a given interval. In this article, a transformation is proposed to convert prescribed bounds on an output variable into time-varying saturations on the synthesised linear scalar control law. This transformation uses some well-chosen time-varying coefficients so that the resulting time-varying saturation bounds do not overlap in the presence of disturbances. Using an anti-windup approach, it is obtained that the origin of the resulting closed loop is globally asymptotically stable and that the constrained output variable satisfies the time-domain constraints in the presence of an unknown finite-energy-bounded disturbance. An application to a linear ball and beam model is presented.
Keywords:Constrained control;linear systems;unknown disturbance;interval constraint;time-domain constraint;anti-windup