화학공학소재연구정보센터
Journal of Membrane Science, Vol.549, 312-320, 2018
On the direct synthesis of Cu(BDC) MOF nanosheets and their performance in mixed matrix membranes
High aspect-ratio nanosheets of metal-organic frameworks (MOFs) hold promise for use as selective flakes in gas separation membranes. However, simple and scalable methods for the synthesis of MOF nanosheets have thus far remained elusive. Here, we describe the direct synthesis of Cu(BDC) (BDC2-= 1,4-benzenedicarboxylate) nanosheets with an average lateral size of 2.5 mu m and a thickness of 25 nm from a well-mixed solution. Characterization of the nanosheets by powder and thin film X-ray diffraction, electron microscopy, and electron diffraction reveals pronounced structural disorder that may affect their pore structure. Incorporation of the Cu (BDC) nanosheets into a Matrimid polymer matrix results in mixed matrix membranes (MMMs) that exhibit a 70% increase in the CO2/CH4 selectivity compared with that of Matrimid. Analysis of new and previously reported permeation data for Cu(BDC) MMMs using a mathematical model for selective flake composites indicates that further performance improvements could be achieved with the selection of different polymers for use in the continuous phase.