화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.122, No.3, 1334-1344, 2018
Extraction of Gd3+ and UO22+ Ions Using Polystyrene Grafted Dibenzo Crown Ether (DB18C6) with Octanol and Nitrobenzene: A Molecular Dynamics Study
Atomistic molecular dynamics (MD) simulations are performed in order to derive thermodynamic properties important to understand the extraction of gadolinium (Gd3+) and uranium dioxide (UO2) with dibenzo crown ether (DBCE) in nitrobenzene (NB) and octanol (OCT) solvents. The effect of polystyrene graft length, on DBCE, on the binding behavior of Gd3+ and UO22+ is investigated for the first time. Our simulation results demonstrate that the binding of Gd3+ and UO22+ onto the oxygens of crown ethers is favorable for polystyrene grafted crown ether in the organic solvents OCT and NB. The metal ion binding free energy (Delta G(Binding)) in different solvent environments is calculated using the thermodynamic integration (TI) method. Delta G(Binding) becomes more favorable in both solvents, NB and OCT, with an increase in the polystyrene monomer length. The metal ion transferability from an aqueous phase to an organic phase is estimated by calculating transfer free-energy calculations Delta G(Transfer)). Delta G(Transfer) is significantly favorable for both Gd3+ and UO22+ for the transfer from the aqueous phase to the organic phase (i.e., NB and OCT) via ion-complexation to DBCE with an increase in polystyrene length. The partition coefficient (log P) values for Gd3+ and UO22+ show a 5-fold increase in separation capacity with polystyrene grafted DBCE. We corroborate the observed behavior by further analyzing the structural and dynamical properties of the ions in different phases.