Journal of Power Sources, Vol.383, 102-109, 2018
High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device
Development of supercapacitors with high energy density and long cycle life using sustainable materials for next generation applications is of paramount importance. The ongoing challenge is to elevate the energy density of supercapacitors on par with batteries, while upholding the power and cyclability. In addition, attaining such superior performance with green and sustainable bio-mass derived compounds is very crucial to address the rising environmental concerns. Herein, we demonstrate the use of watermelon rind, a bio-waste from watermelons, towards high energy, and ultra-stable high temperature green supercapacitors with a high-voltage ionic liquid electrolyte. Supercapacitors assembled with ultra-high surface area, hierarchically porous carbon exhibits a remarkable performance both at room temperature and at high temperature (60 degrees C) with maximum energy densities of similar to 174 Wh kg(-1) (25 degrees C), and 177 Wh kg(-1) (60 degrees C) - based on active mass of both electrodes. Furthermore, an ultra-high specific power of similar to 20 kW kg(-1) along with an ultra-stable cycling performance with 90% retention over 150,000 cycles has been achieved even at 60 degrees C, outperforming supercapacitors assembled with other carbon based materials. These results demonstrate the potential to develop high-performing, green energy storage devices using eco-friendly materials for next generation electric vehicles and other advanced energy storage systems.