화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.140, No.4, 1203-1206, 2018
Fluorescent Proteins Detect Host Structural Rearrangements via Electrostatic Mechanism
The rational design of genetically encoded fluorescent biosensors, which can detect rearrangements of target proteins via interdomain allostery, is hindered by the absence of mechanistic understanding of the underlying photophysics. Here, we focus on the modulation of fluorescence by mechanical perturbation in a popular biological probe: enhanced Green Fluorescent Protein (eGFP). Using a combination of molecular dynamics (MD) simulations and quantum chemistry, and a set of physically motivated assumptions, we construct a map of fluorescence quantum yield as a function of a 2D electric field imposed by the protein environment on the fluorophore. This map is transferable between Tsien's Class 2 GFP's, and it allows one to estimate the shifts in fluorescence intensity due to mechanical perturbations directly from MD simulations. We use it in combination with steered MD simulations to put forward a hypothesis for the mechanism of a genetically encoded voltage probe (ArcLight) whose mechanism is currently under debate.