화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.140, No.4, 1337-1347, 2018
From Quasicrystals to Crystals with Interpenetrating Icosahedra in Ca-Au-Al: In Situ Variable-Temperature Transformation
The irreversible transformation from an icosahedral quasicrystal (i-QC) CaAu4.39Al1.61 to its cubic 2/1 crystalline approximant (CA) Ca13Au56.31 Al-(3)(21.69) (CaAu4.33(1)Al1.67, Pa (3) over bar (No. 205); Pearson symbol: cP728; a = 23.8934(4)), starting at similar to 570 degrees C and complete by similar to 650 degrees C, is discovered from in situ, high-energy, variable-temperature powder X-ray diffraction (PXRD), thereby providing direct experimental evidence for the relationship between QCs and their associated CAs. The new cubic phase crystallizes in a Tsai-type approximant structure under the broader classification of polar intermetallic compounds, in which atoms of different electronegativities, viz., electronegative Au + Al vs electropositive Ca, are arranged in concentric shells. From a structural chemical perspective, the outermost shell of this cubic approximant may be described as interpenetrating and edge-sharing icosahedra, a perspective that is obtained by splitting the traditional structural description of this shell as a 92-atom rhombic triacontahedron into an 80-vertex cage of primarily Au [Au59.86(2)Al17.14 square(3.00)] and an icosahedral shell of only Al [Al-10.5 square(1.5)]. Following the proposal that the cubic 2/1 CA approximates the structure of the i-QC and on the basis of the observed transformation, an atomic site analysis of the 2/1 CA, which shows a preference to maximize the number of heteroatomic Au-Al nearest neighbor contacts over homoatomic Al-Al contacts, implies a similar outcome for the i-QC structure. Analysis of the most intense reflections in the diffraction pattern of the cubic 2/1 CA that changed during the phase transformation shows correlations with icosahedral symmetry, and the stability of this cubic phase is assessed using valence electron counts. According to electronic structure calculations, a cubic 1/1 CA, "Ca24Au88Al (64)" (CaAu3.67Al2.67) is proposed.