Langmuir, Vol.34, No.15, 4515-4525, 2018
Self-Organization of Soft Hydrogel Microspheres during the Evaporation of Aqueous Droplets
The unique drying behavior of aqueous droplets that contain soft hydrogel microspheres (microgels) upon evaporation was systematically investigated. Compared to the ring-shaped deposits that are obtained from drying solid microsphere dispersions, we have previously reported that uniformly ordered thin films are obtained from drying similar to 1.2 mu m-sized poly(N-isopropyl acrylamide) microgel dispersions. In the present study, we thoroughly investigated several hitherto unexplored aspects of this self-organization, such as the effect of the size, chemical structure, and "softness" of the microgels (or rigid microspheres). For the macro- and microscopic observation of the drying behavior of various microsphere dispersions, an optical microscope and a digital camera were employed. The results suggested that the convection in the aqueous droplets plays an important role for the transportation of the microgels to the air/water interface, where the softness and surface activity of the microgels strongly affects the adsorption of the microgels. On the basis of these discoveries, a design concept for the rapid formation of uniform thin films of soft microgels was proposed.