Langmuir, Vol.34, No.6, 2302-2311, 2018
Reversibly Switching Wormlike Micelles Formed by a Selenium Containing Surfactant and Benzyl Tertiary Amine Using CO2/N-2 and Redox Reaction
Multiresponsive wormlike micelles (WLMs) remain a significant challenge in the construction of smart soft materials based on surfactants. Herein, we report the preparation of a viscoelastic wormlike micellar solution based on a new redox-responsive surfactant, sodium dodecylselanylpropyl sulfate (SDSePS), and commercially available benzyl tertiary amine (BTA) in the presence of CO2. In this system, SDSePS can be reversibly switched on (selenide) and off (selenoxide) by a redox reaction, akin to that previously reported for benzylselanyl or phenylselanyl surfactants. By alternately adding H2O2 and N2H4 H2O, WLMs can be reversibly broken and formed because of the transformation of the hydrophilic headgroup of SDSePS, originating from the reversible formation of selenoxide. Moreover, WLMs can also be switched on and off by cyclically bubbling CO2 and N-2 because of the variation of the binding interaction between SDSePS and BTA, resulting from the reversible protonation of BTA. This interesting and unique multiresponsive behavior makes the current WLMs a potential candidate for smart control of the "sol-gel" transition or substantial thickening of solutions.