화학공학소재연구정보센터
Journal of Polymer Science Part A: Polymer Chemistry, Vol.32, No.5, 859-867, 1994
Synthesis of Graft-Copolymers Having Phospholipid Polar Group by Macromonomer Method and Their Properties in Water
Water-soluble graft copolymers with phospholipid polar group were synthesized by the macromonomer method and their properties in water were investigated by surface tension and fluorescence spectroscopic measurements. At first, 2-methacryloyloxyethyl phosphorylcholine (MPC) was polymerized in the presence of 3-mercapt propionic acid as a chain transfer agent and carboxyl group-terminated oligo (MPC) was obtained. The oligo (MPC) reacted with glycidyl methacrylate to convert the carboxyl group to a polymerizable methacryloyl group. The MPC macromonomer obtained was copolymerized with hydrophobic n-butyl methacrylate (BMA) and a graft copolymer was obtained. The graft copolymer, poly(MPC-graft-BMA), was water-soluble when the MPC unit mole fraction was above 0.40. The surface tension of the aqueous solution of poly(MPC-graft-BMA) did not depend on the polymer concentration below 0.1 wt %. This tendency was the same as that which appeared in aqueous poly (MPC) solution. The fluorescence intensity of hydrophobic probes observed in an aqueous solution of the poly(MPC-graft-BMA) was also the same level as that observed in the case of poly(MPC). These results clearly indicated that the poly(MPC-graft-BMA) took a domain structure like micelle in water, i.e., the hydrophobic poly(BMA) backbone was in the core part and the hydrophilic poly (MPC) chain formed the shell part of the micelle.