화학공학소재연구정보센터
Transport in Porous Media, Vol.121, No.2, 263-288, 2018
Comprehensive Seepage Simulation of Fluid Flow in Multi-scaled Shale Gas Reservoirs
Shale gas seepage behaviour is a multi-field/-scale problem and makes transient pressure analysis a very challenging task. Non-Darcy flow in nanopores is prominent due to the broken of continuity hypothesis. Slippage effect and Knudsen diffusion are two important seepage mechanisms in nanopores, while recent studies show surface diffusion is another important transporting mechanism on surface of nanopores. Porous kerogen system contains large amounts of dissolved gas, which should not be overlooked. In this study, a comprehensive mathematical model was established by pseudo-quadruple porosity medium conception, coupling the effects of slippage flow, Knudsen diffusion, surface diffusion, ad-/desorption and gas transferring from kerogen to nanopore system, while fluid flow in fractures/macropores is described by Darcy's law. Transient pressure behaviours of a multiple fractured horizontal well in box-shaped shale gas reservoir were studied, with nine possible flow regimes divided and parameters sensitivity analysed. Adsorbed constant and dissolved constant were defined to reflect the amount of adsorbed gas and dissolved gas, respectively. Research shows that adsorbed gas and dissolved gas are two important gas storage forms, neither of which should be neglected. The study can not only help us understand fluid flow mechanisms in nanopores from microscopic perspective, but enable us to analyse production performance and determine key operational parameters from macroscopic perspective.