Transport in Porous Media, Vol.121, No.1, 109-120, 2018
Effect of Inertial Terms on Fluid-Porous Medium Flow Coupling
The study considers an effect of the nonlinear inertial terms in the Brinkman filtration equation on the characteristics of coupled flows in a pure fluid and porous medium in the frameworks of two independent problems. The first problem is the forced boundary-layer flow overlying the Darcy-Brinkman porous medium. The Prandtl theory is used, and the self-similar equations are built to describe it. It is shown that the inertial terms have a valuable effect on the boundary-layer structure because of the large velocity gradient in the transition zone. The boundary-layer thickness in a porous medium rapidly grows at large Reynolds numbers. The velocity magnitude and gradient at the interface also change. The second independent problem is an analysis of the inertial terms effect on the flow stability. The neutral curves of the full and linearized flow models are built using the shooting method. They have different short-wave asymptotic, but there are no significant changes in the critical Reynolds numbers and corresponding wave numbers.