화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.62, 185-191, June, 2018
Electrodeposition of Cu2S nanoparticles on fluorine-doped tin oxide for efficient counter electrode of quantum-dot-sensitized solar cells
E-mail:
This study demonstrated a single-step potentiostatic method for the electrodeposition of copper (I) sulfide (Cu2S) nanoparticles onto fluorine-doped tin oxide (FTO) electrode from an aqueous solution of CuCl2 and thiourea (TU) to develop counter electrodes (CEs) for quantum-dot sensitized solar cells (QDSSCs). The homogeneously distributed and optimized Cu2S-CE exhibited an improved catalytic activity in the reduction of polysulfide (S2-/Sn 2-) electrolyte, which resulted in a power conversion efficiency (PCE) of 4.24% with a short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) of 19.60 mA/cm2, 0.445 V, and 48.62%, respectively, for PbS/CdS/ZnS QDs sensitized QDSSCs, while the Pt counterpart exhibited a PCE of 1.17%. The superior photovoltaic performance of this Cu2S.CEs based QDSSC compared to the Pt counterpart is due to its greater electrocatalytic activity and lower charge transfer resistance (RCT) at the Cu2S-CEs/(S2-/Sn 2-) interface. This strategy provides an effective, low-cost, and non-Pt electrode for QDSSCs, which is promising for other electrochemical applications.
  1. Kamat PV, J. Phys. Chem. Lett., 4, 908 (2013)
  2. Hu X, Li Y, Tian J, Yang H, Cui H, J. Ind. Eng. Chem., 45, 189 (2017)
  3. Choi Y, Thongsai N, Chae A, Jo S, Kang EB, Paoprasert P, Park SY, In I, J. Ind. Eng. Chem., 47, 329 (2017)
  4. Luther JM, Beard MC, Song Q, Law M, Ellingson RJ, Nozik AJ, Nano Lett., 7, 1779 (2007)
  5. Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV, J. Am. Chem. Soc., 130(12), 4007 (2008)
  6. Pan ZX, Mora-Sero I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong XH, Bisquert J, J. Am. Chem. Soc., 136(25), 9203 (2014)
  7. Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X, ACS Nano, 7, 5215 (2013)
  8. Wang J, Mora-Sero I, Pan ZX, Zhao K, Zhang H, Feng YY, Yang G, Zhong XH, Bisquert J, J. Am. Chem. Soc., 135(42), 15913 (2013)
  9. Kaur R, Sharma AL, Kim KH, Deep A, J. Ind. Eng. Chem., 53, 77 (2017)
  10. Yu J, Wang W, Pan Z, Du J, Ren Z, Xue W, Zhong X, J. Mater. Chem. A., 5, 14124 (2017)
  11. Gopi CVVM, Venkata-Haritha M, Kim SK, Kim HJ, Dalton Trans., 44, 630 (2015)
  12. Kim H, Jeong H, An TK, Park CE, Yong K, ACS Appl. Mater. Interfaces, 5, 268 (2013)
  13. Tachan Z, Hod I, Ruhle S, Zaban A, J. Phys. Chem. C., 115, 6162 (2011)
  14. Quy VHV, Kim JH, Kang SH, Choi CJ, Rajesh JA, Ahn KS, J. Power Sources, 316, 53 (2016)
  15. Givalou L, Antoniadou M, Perganti D, Giannouri M, Karagianni CS, Kontos AG, Falaras P, Electrochim. Acta, 210, 630 (2016)
  16. Lin CY, Teng CY, Li TL, Lee YL, Teng H, J. Mater. Chem. A, 1, 1155 (2013)
  17. Xu J, ang X, Yang QD, Wong TL, Lee CS, J. Phys. Chem. C, 116, 19718 (2012)
  18. Zhang H, Yang C, Du ZL, Pan DY, Zhong XH, J. Mater. Chem. A, 5, 1614 (2017)
  19. Du ZL, Pan ZX, Fabregat-Santiago F, Zhao K, Long DH, Zhang H, Zhao YX, Zhong XH, Yu JS, Bisquert J, J. Phys. Chem. Lett., 7, 3103 (2016)
  20. Zhang H, Bao HL, Zhong XH, J. Mater. Chem. A, 3, 6557 (2015)
  21. Kim CS, Choi SH, Bang JH, ACS Appl. Mater. Interfaces, 6, 22078 (2014)
  22. Wang SY, Wang W, Lu ZH, Mat. Sci. Eng. B, 103, 184 (2003)
  23. Kemmler M, Lazell M, Brien PO, Park JH, Walsh JR, J. Mater. Sci. -Mater. Electron., 13, 531 (2002)
  24. Xin MD, Li KW, Wang H, Appl. Surf. Sci., 256(5), 1436 (2009)
  25. Thulasi-Varma CV, Rao SS, Kumar CSSP, Gopi CVVM, Durga IK, Kim SK, Punnoose D, Kim HJ, Dalton Trans., 44, 19330 (2015)
  26. Shen C, Sun L, Koh ZY, Wang Q, J. Mater. Chem. A, 2, 2807 (2014)
  27. Kalanur SS, Chae SY, Joo OS, Electrochim. Acta, 103, 91 (2013)
  28. Wang F, Dong H, Pan J, Li J, Li Q, Xu D, J. Phys. Chem. C, 118, 19589 (2014)
  29. Schimmel MI, Bottechia OL, Wendt H, J. Appl. Electrochem., 28(3), 299 (1998)
  30. McDaniel N, Makarov NS, Pietryga JM, Klimov VI, Nat. Commun., 4, 2887 (2013)
  31. Radich JG, Dwyer R, Kamat PV, J. Phys. Chem. Lett., 2, 2453 (2011)
  32. Xi FX, Liu HC, Li WP, Zhu LQ, Geng HF, Quan LL, Liang WT, Electrochim. Acta, 178, 329 (2015)
  33. Kamaja CK, Devarapalli RR, Dave Y, Debgupta NJ, Shelke MV, J. Power Sources, 315, 277e (2016)
  34. Shi K, Hu K, Wang S, Lau CY, Shiu KK, Electrochim. Acta, 52(19), 5907 (2007)
  35. Quinet M, Lallemand F, Ricq L, Hihn JY, Delobelle R, Arnould C, Mekhalif Z, Electrochim. Acta, 54(5), 1529 (2009)
  36. Szymaszek A, Biernat J, Pajdowski L, Electrochim. Acta, 22, 359 (1977)
  37. Suarez DF, Olson FA, J. Appl. Electrochem., 22, 1002 (1992)
  38. Ghahremaninezhad A, Asselin E, Dixon DG, J. Phys. Chem. C., 115, 9320 (2011)
  39. Henriquez R, Froment M, Riveros G, Dalchiele EA, Gomez H, Grez P, Lincot D, J. Phys. Chem. C, 111, 6017 (2007)
  40. Hrynaszkiewicz TJ, Ikozlowski J, Cieszynska E, Krogulec T, J. Electroanal. Chem., 367(1-2), 213 (1994)
  41. Kandel K, Chaudhary U, Nelson NC, Slowing II, ACS Catal., 5, 6719 (2015)
  42. Klein JC, Proctor A, Hercules DM, Black JF, Anal. Chem., 55, 2055 (1983)
  43. Kuhn M, Rodriguez JA, J. Phys. Chem., 98(46), 12059 (1994)
  44. Lee M, Yong K, Nanotechnology, 23, 194014 (2012)
  45. Ahmad S, Guillen E, Kavan L, Gratzel M, Nazeeruddin MK, Energy Environ. Sci., 6, 3439 (2013)
  46. Jung SM, Choi IT, Lim K, Ko J, Kim JC, Lee JJ, Ju MJ, Kim HK, Baek JB, Chem. Mater., 26, 3586 (2014)
  47. Ju MJ, Kim JC, Choi HJ, Choi IT, Kim SG, Lim K, Ko J, Lee JJ, Jeon IY, Baek JB, Kim HK, ACS Nano, 7, 5243 (2013)
  48. Han L, Koide N, Chiba Y, Mitate T, Appl. Phys. Lett., 84, 2433 (2004)
  49. Han L, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A, Yamanaka R, Appl. Phys. Lett., 86, 213501 (2005)