Journal of Industrial and Engineering Chemistry, Vol.62, 185-191, June, 2018
Electrodeposition of Cu2S nanoparticles on fluorine-doped tin oxide for efficient counter electrode of quantum-dot-sensitized solar cells
E-mail:
This study demonstrated a single-step potentiostatic method for the electrodeposition of copper (I) sulfide (Cu2S) nanoparticles onto fluorine-doped tin oxide (FTO) electrode from an aqueous solution of CuCl2 and thiourea (TU) to develop counter electrodes (CEs) for quantum-dot sensitized solar cells (QDSSCs). The homogeneously distributed and optimized Cu2S-CE exhibited an improved catalytic activity in the reduction of polysulfide (S2-/Sn
2-) electrolyte, which resulted in a power conversion efficiency (PCE) of 4.24% with a short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) of 19.60 mA/cm2, 0.445 V, and 48.62%, respectively, for PbS/CdS/ZnS QDs sensitized QDSSCs, while the Pt counterpart exhibited a PCE of 1.17%. The superior photovoltaic performance of this Cu2S.CEs based QDSSC compared to the Pt counterpart is due to its greater electrocatalytic activity and lower charge transfer resistance (RCT) at the Cu2S-CEs/(S2-/Sn 2-) interface. This strategy provides an effective, low-cost, and non-Pt electrode for QDSSCs, which is promising for other electrochemical applications.
Keywords:Electrodeposition;Copper(I) sulfide;Counter electrodes;Electrocatalytic;Quantum-dot sensitized solar cells
- Kamat PV, J. Phys. Chem. Lett., 4, 908 (2013)
- Hu X, Li Y, Tian J, Yang H, Cui H, J. Ind. Eng. Chem., 45, 189 (2017)
- Choi Y, Thongsai N, Chae A, Jo S, Kang EB, Paoprasert P, Park SY, In I, J. Ind. Eng. Chem., 47, 329 (2017)
- Luther JM, Beard MC, Song Q, Law M, Ellingson RJ, Nozik AJ, Nano Lett., 7, 1779 (2007)
- Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV, J. Am. Chem. Soc., 130(12), 4007 (2008)
- Pan ZX, Mora-Sero I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong XH, Bisquert J, J. Am. Chem. Soc., 136(25), 9203 (2014)
- Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X, ACS Nano, 7, 5215 (2013)
- Wang J, Mora-Sero I, Pan ZX, Zhao K, Zhang H, Feng YY, Yang G, Zhong XH, Bisquert J, J. Am. Chem. Soc., 135(42), 15913 (2013)
- Kaur R, Sharma AL, Kim KH, Deep A, J. Ind. Eng. Chem., 53, 77 (2017)
- Yu J, Wang W, Pan Z, Du J, Ren Z, Xue W, Zhong X, J. Mater. Chem. A., 5, 14124 (2017)
- Gopi CVVM, Venkata-Haritha M, Kim SK, Kim HJ, Dalton Trans., 44, 630 (2015)
- Kim H, Jeong H, An TK, Park CE, Yong K, ACS Appl. Mater. Interfaces, 5, 268 (2013)
- Tachan Z, Hod I, Ruhle S, Zaban A, J. Phys. Chem. C., 115, 6162 (2011)
- Quy VHV, Kim JH, Kang SH, Choi CJ, Rajesh JA, Ahn KS, J. Power Sources, 316, 53 (2016)
- Givalou L, Antoniadou M, Perganti D, Giannouri M, Karagianni CS, Kontos AG, Falaras P, Electrochim. Acta, 210, 630 (2016)
- Lin CY, Teng CY, Li TL, Lee YL, Teng H, J. Mater. Chem. A, 1, 1155 (2013)
- Xu J, ang X, Yang QD, Wong TL, Lee CS, J. Phys. Chem. C, 116, 19718 (2012)
- Zhang H, Yang C, Du ZL, Pan DY, Zhong XH, J. Mater. Chem. A, 5, 1614 (2017)
- Du ZL, Pan ZX, Fabregat-Santiago F, Zhao K, Long DH, Zhang H, Zhao YX, Zhong XH, Yu JS, Bisquert J, J. Phys. Chem. Lett., 7, 3103 (2016)
- Zhang H, Bao HL, Zhong XH, J. Mater. Chem. A, 3, 6557 (2015)
- Kim CS, Choi SH, Bang JH, ACS Appl. Mater. Interfaces, 6, 22078 (2014)
- Wang SY, Wang W, Lu ZH, Mat. Sci. Eng. B, 103, 184 (2003)
- Kemmler M, Lazell M, Brien PO, Park JH, Walsh JR, J. Mater. Sci. -Mater. Electron., 13, 531 (2002)
- Xin MD, Li KW, Wang H, Appl. Surf. Sci., 256(5), 1436 (2009)
- Thulasi-Varma CV, Rao SS, Kumar CSSP, Gopi CVVM, Durga IK, Kim SK, Punnoose D, Kim HJ, Dalton Trans., 44, 19330 (2015)
- Shen C, Sun L, Koh ZY, Wang Q, J. Mater. Chem. A, 2, 2807 (2014)
- Kalanur SS, Chae SY, Joo OS, Electrochim. Acta, 103, 91 (2013)
- Wang F, Dong H, Pan J, Li J, Li Q, Xu D, J. Phys. Chem. C, 118, 19589 (2014)
- Schimmel MI, Bottechia OL, Wendt H, J. Appl. Electrochem., 28(3), 299 (1998)
- McDaniel N, Makarov NS, Pietryga JM, Klimov VI, Nat. Commun., 4, 2887 (2013)
- Radich JG, Dwyer R, Kamat PV, J. Phys. Chem. Lett., 2, 2453 (2011)
- Xi FX, Liu HC, Li WP, Zhu LQ, Geng HF, Quan LL, Liang WT, Electrochim. Acta, 178, 329 (2015)
- Kamaja CK, Devarapalli RR, Dave Y, Debgupta NJ, Shelke MV, J. Power Sources, 315, 277e (2016)
- Shi K, Hu K, Wang S, Lau CY, Shiu KK, Electrochim. Acta, 52(19), 5907 (2007)
- Quinet M, Lallemand F, Ricq L, Hihn JY, Delobelle R, Arnould C, Mekhalif Z, Electrochim. Acta, 54(5), 1529 (2009)
- Szymaszek A, Biernat J, Pajdowski L, Electrochim. Acta, 22, 359 (1977)
- Suarez DF, Olson FA, J. Appl. Electrochem., 22, 1002 (1992)
- Ghahremaninezhad A, Asselin E, Dixon DG, J. Phys. Chem. C., 115, 9320 (2011)
- Henriquez R, Froment M, Riveros G, Dalchiele EA, Gomez H, Grez P, Lincot D, J. Phys. Chem. C, 111, 6017 (2007)
- Hrynaszkiewicz TJ, Ikozlowski J, Cieszynska E, Krogulec T, J. Electroanal. Chem., 367(1-2), 213 (1994)
- Kandel K, Chaudhary U, Nelson NC, Slowing II, ACS Catal., 5, 6719 (2015)
- Klein JC, Proctor A, Hercules DM, Black JF, Anal. Chem., 55, 2055 (1983)
- Kuhn M, Rodriguez JA, J. Phys. Chem., 98(46), 12059 (1994)
- Lee M, Yong K, Nanotechnology, 23, 194014 (2012)
- Ahmad S, Guillen E, Kavan L, Gratzel M, Nazeeruddin MK, Energy Environ. Sci., 6, 3439 (2013)
- Jung SM, Choi IT, Lim K, Ko J, Kim JC, Lee JJ, Ju MJ, Kim HK, Baek JB, Chem. Mater., 26, 3586 (2014)
- Ju MJ, Kim JC, Choi HJ, Choi IT, Kim SG, Lim K, Ko J, Lee JJ, Jeon IY, Baek JB, Kim HK, ACS Nano, 7, 5243 (2013)
- Han L, Koide N, Chiba Y, Mitate T, Appl. Phys. Lett., 84, 2433 (2004)
- Han L, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A, Yamanaka R, Appl. Phys. Lett., 86, 213501 (2005)