Polymer(Korea), Vol.42, No.3, 446-455, May, 2018
막 결합형 축전식 탈염공정에서 물분해 전압보다 더 높은 흡착전압의 적용에 대한 성능 연구
Performance Study on Application of Higher Adsorption Voltages than Water Dissociation Voltage in Membrane Capacitive Deionization (MCDI) Process
E-mail:
초록
물분해 전압으로 알려진 1.5 V보다 더 높은 흡착전압에서 막 결합형 축전식 공정의 성능을 염제거효율(salt removal efficiency)을 통해 조사하였다. 흡착전압을 1~5 V까지 알아보았는데 주로 3 V와 5 V에서 공급액의 농도와 유속 등에 대하여 자세히 조사하였다. 또한 NaCl 100 mg/L 용액에 대하여 축전식 탈염(CDI)과 막 축전식 탈염(MCDI)에 대해서 전류측정을 하였고 또한 증류수에 대하여 흡착전압 3 V와 5 V에 대해서 전류와 pH 측정을 하여 물분해 정도를 정성적으로 논하였다. 그리고 다양한 2가 및 3가 금속염에 대하여 흡착전압과 농도별로 염제거효율을 알기 위하여 수행하였다. 흡착전압이 5 V이었을 때 NaCl 농도 300 mg/L와 500 mg/L 용액에 대해서 각각 염제 거효율 100%와 97.3%를 얻었으나 농도가 증가할수록 감소하였다. 또한 2가 금속염의 MgCl2, MgSO4, CaCl2의 500mg/L 용액에 대하여 순서대로 91%, 79%, 82.3%의 높은 염제거효율을 얻었다.
Performance of the membrane capacitive deionization (MCDI) process was investigated in terms of the salt removal efficiency (SRE) at the adsorption voltages higher than the water dissociation voltage of 1.5 V in accordance with the feed flow rate and concentration. The currents were measured for both CDI and MCDI for NaCl 100 mg/L solution and the currents and pH levels were also examined to discuss qualitatively for the distilled water at 3 V and 5 V. It was carried out to look into the SREs for the various di-valent and tri-valent metal salts according to voltages and concentrations. The SREs of 100% and 97.3% were obtained at the adsorption voltage 5 V for 300 and 500 mg/L, respectively. However the SRE decreased as the feed concentration increased. The SREs, 91%, 79% and 82.3%, were given for 500 mg/L feed solution of the di-valent metal salts, MgCl2, MgSO4, CaCl2 in sequence.
Keywords:membrane capacitive deionization;water dissociation;salt removal efficiency;adsorption voltage
- Caudle DD, Tucker JH, Cooper JL, Arnold BB, Papastamataki A, Electrochemical demineralization of water with carbon electrodes, Research Report, Oklahoma Univ. Research Institute, Oklahoma, 1966.
- Li HB, Zou L, Desalination, 275(1-3), 62 (2011)
- Zhao R, Satpradit O, Rijnaarts HHM, Biesheuvel PM, van der Wal A, Water Res., 47, 1941 (2013)
- Hemmatifar A, Plako JW, Stadermann M, Santiago JG, Water Res., 104, 303 (2016)
- Lee JB, Park KK, Eum HM, Lee CW, Desalination, 196(1-3), 125 (2006)
- Lee JY, Seo SJ, Yun SH, Moon SH, Water Res., 45, 5375 (2011)
- AlMarzooqi FA, Al Ghaferi AA, Saadat I, Hilal N, Desalination, 342, 2014
- Kim YJ, Choi JH, Sep. Purif. Technol., 71(1), 70 (2010)
- Kim JS, Choi JH, J. Membr. Sci., 355(1-2), 85 (2010)
- Kim JS, Kim CS, Shin HS, Rhim JW, Macromol. Res., 23(4), 360 (2015)
- Liu Y, Pan LK, Xu XT, Lu T, Sun Z, Chua DHC, Electrochim. Acta, 130, 619 (2014)
- Laxman K, Myint MTZ, Bourdoucen H, Dutta J, ACS Appl. Mater. Interfaces, 6, 10113 (2014)
- Li H, Gao Y, Pan L, Zhang Y, Chen Y, Sun Z, Water Res., 42, 4923 (2008)
- Moon GY, Rhim JW, Macromol. Res., 15(4), 379 (2007)
- Jeon YS, Cheong SI, Rhim JW, Macromol. Res., 25(7), 712 (2017)