Korean Chemical Engineering Research, Vol.56, No.3, 361-369, June, 2018
Preparation of Highly Tough Ethylene Vinyl Acetate (EVA) Heterogeneous Cation Exchange Membranes and Their Properties of Desalination
E-mail:
A manufacturing method has been devised to prepare novel heterogeneous cation exchange membranes by mixing ethylene vinyl acetate (EVA) copolymers with a commercial cation exchange resin. Optimum material characteristics, mixture ratios and manufacturing conditions have been worked out for achieving favorable membrane performance. Ion exchange capacity, electrical resistance, water uptake, swelling ratio and tensile strength properties were measured. SEM analysis was used to monitor morphology. Effects of vinyl acetate (VA) content, melt index (MI) and ion exchange resin content on properties of heterogeneous cation exchange membranes have been discussed. An application test was carried out by mounting a selected membrane in a membrane capacitive deionization (MCDI) system to investigate its desalination capability. 0.92 meq/g of ion exchange capacity, 8.7 Ω.cm2 of electrical resistance, 40 kgf/ cm2 of tensile strength, 19% of swelling ratio, 42% of water uptake, and 56.4% salt removal rate were achieved at best. VA content plays a leading role on the extent of physical properties and performance; however, MI is important for having uniform distribution of resin grains and achieving better ionic conductivity. Overall, manufacturing cost has been suppressed to 5-10% of that of homogeneous ion exchange membranes.
- Khawaji AD, Kutubkhanah IK, Wie JM, Desalination, 221(1-3), 47 (2008)
- Kim YM, Kim SJ, Kim YS, Lee S, Kim IS, Kim JH, Desalination, 238(1-3), 312 (2009)
- Charcosset C, Desalination, 245(1-3), 214 (2009)
- Lee KP, Arnot TC, Mattia D, J. Membr. Sci., 370(1-2), 122 (2011)
- Cho CH, Oh KY, Kim SK, Yeo JG, Sharma P, J. Membr. Sci., 371(1-2), 226 (2011)
- Zhong PS, Widjojo N, Chung TS, Weber M, Maletzko C, J. Membr. Sci., 417, 52 (2012)
- Al-Rashdi BAM, Johnson DJ, Hilal N, Desalination, 315, 2 (2013)
- Cheng S, Oatley DL, Williams PM, Wright CJ, Water Research, 46(1), 33 (2012)
- Strathmann H, Desalination, 264(3), 268 (2010)
- Jones RJ, Massanet-Nicolau J, Guwy A, Premier GC, Dinsdale RM, Reilly M, Bioresour. Technol., 189, 279 (2015)
- Bulejko P, Stranska E, Weinertova K, J. Solid State Electrochemistry, 21(1), 111 (2017)
- Koresh J, Soffer A, J. Electrochem. Soc., 124(9), 1379 (1977)
- Mitani S, Lee SI, Yoon SH, Korai Y, Mochida I, J. Power Sources, 133(2), 298 (2004)
- Zhao R, Porada S, Biesheuvel PM, Van der Wal A, Desalination, 330, 35 (2013)
- Hassanvand A, Wei K, Talebi S, Chen GQ, Kentish SE, Membranes, 7(3), 54 (2017)
- Ramon GZ, Feinberg BJ, Hoek EM, Energy Environmental Science, 4(11), 4423 (2011)
- Hosseini SM, Madaeni SS, Khodabakhshi AR, J. Membr. Sci., 351(1-2), 178 (2010)
- Sen U, Usta H, Acar O, Citir M, Canlier A, Bozkurt A, Ata A, Macromol. Chem. Phys., 216(1), 106 (2015)
- Bouzek K, Moravcova S, Schauer J, Brozova L, Pientka Z, J. Appl. Electrochem., 40(5), 1005 (2010)
- Gohil GS, Shahi VK, Rangarajan R, J. Membr. Sci., 240(1-2), 211 (2004)
- Vyas PV, Shah BG, Trivedi GS, Ray P, Adhikary SK, Rangarajan R, J. Membr. Sci., 187(1-2), 39 (2004)
- Kim KS, Kim SH, Jung IH, J. Ind. Eng. Chem., 12, 560 (2001)
- Jeong MH, Ko DY, Hwang TS, Membr. J., 25, 431 (2015)
- Stael GC, Rocha MCG, d'Almeida JRM, Ruiz NMDS, Materials Research, 8(3), 269 (2005)
- Jeong KS, Hwang WC, Hwang TS, J. Membr. Sci., 495, 316 (2015)
- Fu RQ, Woo JJ, Seo SJ, Lee JS, Moon SH, J. Membr. Sci., 309(1-2), 156 (2008)
- Li XF, Wang Z, Lu H, Zhao CJ, Na H, Zhao C, J. Membr. Sci., 254(1-2), 147 (2005)
- Hosseini SM, Madaeni SS, Khodabakhshi AR, Zendehnam A, J. Membr. Sci., 365(1-2), 438 (2010)
- Kumar P, Dutta K, Das S, Kundu PP, Appl. Energy, 123, 66 (2014)
- Espert A, Vilaplana F, Karlsson S, Compos. Pt. A-Appl. Sci. Manuf., 35(11), 1267 (2004)
- Chen SX, Lostritto RT, J. Contam. Hydrol., 38(2-3), 185 (1996)
- Jamroz NU, J. Chem. Soe. Pak., 25(2), 84 (2003)
- Huang JC, Wu CL, Adv. Polym. Technol., 19(2), 132 (2000)